Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
ACS Appl Polym Mater ; 6(9): 4954-4963, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38752015

ABSTRACT

This study explores the influence of electronic and ionic conductivities on the behavior of conjugated polymer binders through the measurement of entropic potential and heat generation in an operating lithium-ion battery. Specifically, the traditional poly(vinylidene fluoride) (PVDF) binder in LiNi0.8Co0.15Al0.05O2 (NCA) cathode electrodes was replaced with semiconducting polymer binders based on poly(3,4-propylenedioxythiophene). Two conjugated polymers were explored: one is a homopolymer with all aliphatic side chains, and the other is a copolymer with both aliphatic and ethylene oxide side chains. We have shown previously that both polymers have high electronic conductivity in the potential range of NCA redox, but the copolymer has a higher ionic conductivity and a slightly lower electronic conductivity. Entropic potential measurements during battery cycling revealed consistent trends during delithiation for all of the binders, indicating that the binders did not modify the expected NCA solid solution deintercalation process. The entropic signature of polymer doping to form the conductive state could be clearly observed at potentials below NCA oxidation, however. Operando isothermal calorimetric measurements showed that the conductive binders resulted in less Joule heating compared to PVDF and that the net electrical energy was entirely dissipated as heat. In a comparison of the two conjugated polymer binders, the heat dissipation was lower for the homopolymer binder at lower C-rates, suggesting that electronic conductivity rather than ionic conductivity was the most important for reducing Joule heating at lower rates, but that ionic conductivity became more important at higher rates.

2.
Adv Sci (Weinh) ; 11(8): e2305356, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37946703

ABSTRACT

Molecular design is crucial for endowing conjugated polymers (CPs) with unique properties and enhanced electronic performance. Introducing Hydrogen-bonding (H-bonding) into CPs has been a broadly exploited, yet still emerging strategy capable of tuning a range of properties encompassing solubility, crystallinity, electronic properties, solid-state morphology, and stability, as well as mechanical properties and self-healing properties. Different H-bonding groups can be utilized to tailor CPs properties based on the applications of interest. This review provides an overview of classes of H-bonding CPs (assorted by the different H-bond functional groups), the synthetic methods to introduce the corresponding H-bond functional groups and the impact of H-bonding in CPs on corresponding electronic and materials properties. Recent advances in addressing the trade-off between electronic performance and mechanical durability are also highlighted. Furthermore, insights into future directions and prospects for H-bonded CPs are discussed.

3.
Macromol Rapid Commun ; 45(1): e2300219, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37277618

ABSTRACT

Non-conjugated pendant electroactive polymers (NCPEPs) are an emerging class of polymers that offer the potential of combining the desirable optoelectronic properties of conjugated polymers with the superior synthetic methodologies and stability of traditional non-conjugated polymers. Despite an increasing number of studies focused on NCPEPs, particularly on understanding fundamental structure-property relationships, no attempts have been made to provide an overview on established relationships to date. This review showcases selected reports on NCPEP homopolymers and copolymers that demonstrate how optical, electronic, and physical properties of the polymers are affected by tuning of key structural variables such as the chemical structure of the polymer backbone, molecular weight, tacticity, spacer length, the nature of the pendant group, and in the case of copolymers the ratios between different comonomers and between individual polymer blocks. Correlation of structural features with improved π-stacking and enhanced charge carrier mobility serve as the primary figures of merit in evaluating impact on NCPEP properties. While this review is not intended to serve as a comprehensive summary of all reports on tuning of structural parameters in NCPEPs, it highlights relevant established structure-property relationships that can serve as a guideline for more targeted design of novel NCPEPs in the future.


Subject(s)
Electronics , Polymers , Polymers/chemistry , Electronics/methods , Molecular Weight
4.
ACS Macro Lett ; 12(10): 1339-1344, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37722008

ABSTRACT

While a major improvement to the sustainability of conjugated polymer synthesis, traditional direct arylation polymerization (DArP) still requires high temperatures (typically >100 °C), necessitating a significant energy input requirement. Performing DArP at reduced or ambient temperatures would represent an improvement to the sustainability of the reaction. Here we describe the first report of a well-defined conjugated polymer synthesized by DArP at room temperature. Previous efforts toward room temperature DArP relied on the use of a near-stoichiometric silver reagent, an expensive coinage metal, which makes the reaction less cost-effective and sustainable. Here, room temperature polymerizations of 3,4-ethylenedioxythiophene (EDOT) and 9,9-dioctyl-2,7-diiodofluorene were optimized and provided molar mass (Mn) up to 11 kg/mol PEDOTF, and performing the reaction at the standard ambient temperature of 25 °C provided Mn up to 15 kg/mol. Model studies using other C-H monomers of varying electron density copolymerized with 9,9-dioctyl-2,7-diiodofluorene provided insight into the scope of the room temperature polymerization, suggesting that performing room temperature DArP is highly dependent on the electron richness of the C-H monomer.

5.
J Am Chem Soc ; 145(22): 11914-11920, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37220423

ABSTRACT

Designing new polymer semiconductors for intrinsically stretchable polymer solar cells (IS-PSCs) with high power conversion efficiency (PCE) and durability is critical for wearable electronics applications. Nearly all high-performance PSCs are constructed using fully conjugated polymer donors (PD) and small-molecule acceptors (SMA). However, a successful molecular design of PDs for high-performance and mechanically durable IS-PSCs without sacrificing conjugation has not been realized. In this study, we design a novel thymine side chain terminated 6,7-difluoro-quinoxaline (Q-Thy) monomer and synthesize a series of fully conjugated PDs (PM7-Thy5, PM7-Thy10, PM7-Thy20) featuring Q-Thy. The Q-Thy units capable of inducing dimerizable hydrogen bonding enable strong intermolecular PD assembly and highly efficient and mechanically robust PSCs. The PM7-Thy10:SMA blend demonstrates a combination of high PCE (>17%) in rigid devices and excellent stretchability (crack-onset value >13.5%). More importantly, PM7-Thy10-based IS-PSCs show an unprecedented combination of PCE (13.7%) and ultrahigh mechanical durability (maintaining 80% of initial PCE after 43% strain), illustrating the promising potential for commercialization in wearable applications.

6.
J Phys Chem B ; 127(11): 2511-2520, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36917012

ABSTRACT

Vibrational Stark probes are incisive tools for measuring local electric fields in a wide range of chemical environments. The interpretation of the frequency shift often gets complicated due to the specific interactions of the probe, such as hydrogen bonding and Lewis bonding. Therefore, it is important to distinguish between the pure electrostatic response and the response due to such specific interactions. Here we report a molecular system that is sensitive to both the Stark effect from a single ion and the explicit Lewis bonding of ions with the probe. The molecule consists of a crown ether with an appended benzonitrile. The crown captures cations of various charges, and the electric field from the ions is sensed by the benzonitrile probe. Additionally, the lone pair of the benzonitrile can engage in Lewis interactions with some of the ions by donating partial charge density to the ions. Our system exhibits both of these effects and therefore is a suitable test bed for distinguishing between the pure electrostatic and the Lewis interactions. Our computational results show that the electrostatic influence of the ion is operative at large distances, while the Lewis interaction becomes important only within distances that permit orbital overlap. Our results may be useful for using the nitrile probe for measuring electrostatic and coordination effects in complex ionic environments such as the electrode-electrolyte interfaces.

7.
ACS Macro Lett ; 12(2): 159-164, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36648201

ABSTRACT

The stereoregular nonconjugated pendant electroactive polymer (NCPEP) poly((N-carbazolylethylthio) propyl methacrylate) (PCzETPMA) has recently shown charge carrier mobilities that are on par with conjugated polymers. Here, we increased the complexity of the architecture for this NCPEP by introducing a polystyrene (PS) block via an anionic, living polymerization yielding a family of PS-b-PCzETPMA block copolymers as the first examples of NCPEP-block-copolymers with controlled stereoregularity of the NCPEP-blocks. Through this methodology we were able to control the molar masses, PS to PCzETPMA block ratios, and tacticities of the PCzETPMA-blocks. We found all three parameters to significantly impact the hole mobilities (µh) of the resulting copolymers, which increased with higher molar masses, longer PCzETPMA-blocks, and higher isotacticity of the PCzETPMA-block, giving the best µh of 2.33 × 10-5 cm2/V·s after annealing at 150 °C for the highest molar mass copolymer with a dominant isotactic PCzETPMA-block. This work is the first reported synthesis of a block copolymer bearing a NCPEP-block with a controlled tacticity and demonstrates that such complex polymer architectures can be realized with NCPEPs while maintaining control over their stereoregularity and without significantly suppressing the hole mobility in the resulting copolymers.

8.
ACS Macro Lett ; 11(1): 78-83, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35574785

ABSTRACT

Despite the inherent sustainability direct arylation polymerization (DArP) offers through a C-H activation pathway, the use of expensive homogeneous Pd catalysts remains problematic for large-scale conjugated polymer (CP) synthesis. Herein, the first report on the recycling of heterogeneous catalysts for CP synthesis using DArP is presented. We found SiliaCat Pd-DPP to be a highly efficient and recyclable catalyst for multi-batch CP synthesis providing CPs with molecular weights (Mn) up to 82 kg/mol even after being recycled three times. Batch-to-batch variations were further optimized to afford up to five batches of polymers with a Mn of 25 ± 2.5 kg/mol without structural disparity. Significantly, this work discloses among the most sustainable CP synthesis protocols to date and presents the critical concept of catalyst-recycling to the important field of organic semiconducting polymers, which potentially enables access to truly low-cost flow chemistry for industrial-scale CP synthesis.

9.
ACS Macro Lett ; 10(6): 720-726, 2021 06 15.
Article in English | MEDLINE | ID: mdl-35549095

ABSTRACT

In the search for semiconducting polymer alternatives to conjugated polymers, stereoregular nonconjugated pendant electroactive polymers (NCPEPs) have recently shown competitive hole mobilities with conjugated polymers and a dramatic increase in mobility relative to atactic analogues. Here we investigate one of the key structural variables of NCPEPs: the flexible alkyl spacer that separates the electroactive pendant from the backbone. We investigate a straightforward postpolymerization functionalization synthetic method to synthesize such polymers with high isotacticity using poly(N-carbazolylalkyl acrylate) as a model system, where the alkyl chain spacer in the NCPEPs is varied from 2 to 12 carbons. We observed that the hole mobility increased from the two-carbon spacer, resulting in the highest mobility upon thermal annealing with a four-carbon spacer for 75% isotactic polymers and with a six-carbon spacer for 87% isotactic polymers. As such, we have demonstrated an important role of the spacer chain in influencing mobility. For all spacer lengths, higher mobilities were measured with the more isotactic polymer. While physical characterization of the largely amorphous polymers yielded little insight into the structure-function relationships, DFT and MD simulations indicated helical structures for the polymers where intermolecular short-range π-stacking is observed and is affected by spacer chain length. This work demonstrates that both the degree of stereoregularity and the spacer chain length play a role in determining the hole mobility in NCPEPs.

10.
ACS Macro Lett ; 10(6): 714-719, 2021 06 15.
Article in English | MEDLINE | ID: mdl-35549099

ABSTRACT

For over a decade, Direct Arylation Polymerization (DArP) has been demonstrated to be an eco-friendly, facile, and low-cost alternative to conventional methodologies such as Stille polymerization for conjugated polymer synthesis. By accessing through a C-H activation pathway, DArP offers a reduction of synthetic steps while eliminating the generation of stoichiometric, highly toxic organotin byproducts. However, as the major component in these reactions, the solvents most prevalently employed for DArP are hazardous and produced from unsustainable sources, such as dimethylacetamide (DMA), tetrahydrofuran (THF), and toluene. Although the use of sustainable alternative solvents such as 2-MeTHF and cyclopentyl methyl ether (CPME) has recently emerged, drawbacks of ethereal solvents include the need for a pressurized reaction setup as well as potential peroxide formation. While aromatic solvents are superior in solubilizing conjugated polymers, very little has been done in searching for more sustainable, benign alternatives for this class of solvent. Herein, we report the application of a sustainable, naturally sourced, high-boiling aromatic solvent, p-cymene, to DArP for the first time. p-Cymene was found to display excellent solubilizing ability in the synthesis of a broad scope of alternating copolymers with Mn up to 51.3 kg/mol and yields up to 96.2%, outperforming those prepared using CPME and toluene. Structural analysis revealed the exclusion of defects in these polymers prepared using p-cymene as the solvent which, in the case of a 2,2'-bithiophene monomer, is challenging to access through the use of conventional solvents for DArP, such as DMA and toluene.


Subject(s)
Methyl Ethers , Polymers , Cymenes , Polymerization , Solvents/chemistry , Toluene
11.
ACS Macro Lett ; 10(12): 1493-1500, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35549131

ABSTRACT

Isotactic nonconjugated pendant electroactive polymers (NCPEPs) have recently shown potential to achieve comparable charge carrier mobilities with conjugated polymers. Here we report the broader influence of tacticity in NCPEPs, using poly((N-carbazolylethylthio)propyl methacrylate) (PCzETPMA) as a model polymer. We utilized the thiol-ene reaction as an efficient postpolymerization functionalization method to achieve pendant polymers with high isotacticity and syndiotacticity. We found that a stereoregular isotactic polymer showed ∼100 times increased hole mobility (µh) as compared to both atactic and low molecular weight syndiotactic PCzETPMA, achieving µh of 2.19 × 10-4 cm2 V-1 s-1 after annealing at 120 °C. High molecular weight syndiotactic PCzETPMA gave ∼10 times higher µh than its atactic counterpart, comparable to isotactic PCzETPMA after annealing at 150 °C. Importantly, high molecular weight syndiotactic PCzETPMA showed a dramatic increase in µh to 1.82 × 10-3 cm2 V-1 s-1 when measured after annealing at 210 °C, which surpassed the well-known conjugated polymer poly(3-hexylthiophene) (P3HT) (µh = 4.51 × 10-4 cm2 V-1 s-1). MD simulations indicated short-range π-π stacked ordering in the case of stereoregular isotactic and syndiotactic polymers. This work is the first report of charge carrier mobilities in syndiotactic NCPEPs and demonstrates that the tacticity, annealing conditions, and molecular weight of NCPEPs can strongly affect µh.

12.
ACS Macro Lett ; 9(10): 1446-1451, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-35653661

ABSTRACT

Over the past decade, direct arylation polymerization (DArP) has emerged as a facile and sustainable methodology for the synthesis of conjugated polymers. Recently, we developed Cu-catalyzed DArP (Cu-DArP) as a low-cost, Pd-free synthetic pathway, which enables conjugated polymers to be synthesized with high molecular weights and minimization of defects. However, the lack of study on the use of Cu-precatalysts in small-molecule direct arylation poses significant limitations for Cu-DArP to potentially overtake conventional Pd-catalyzed methodology, such as the low solubility and stability of the previously employed CuI. Therefore, in this report, we decide to explore the utility of a well-defined, easy-to-prepare, highly soluble, and stable precatalyst, Cu(phen)(PPh3)Br, as an alternative to the CuI, 1,10-phenanthroline catalytic system previously used for Cu-DArP. Herein, we report a drastic improvement of Cu-DArP methodology for the synthesis of 5,5'-bithiazole (5-BTz)-based conjugated polymers enabled by an efficient precatalyst approach, affording polymers with good Mn (up to 16.5 kDa) and excellent yields (up to 79%). 1H NMR studies reveal the exclusion of homocoupling defects, which further verifies the excellent stability of Cu(phen)(PPh3)Br compared to CuI. Furthermore, we were able to decrease the catalyst loading from 15 mol % to only 5 mol % (Mn of 11.8 kDa, 64% yield), which is unprecedented when aryl bromides are employed for Cu-DArP. Significantly, 5-BTz was shown to be inactive under various of Pd-DArP conditions, which demonstrates the high compatibility of Cu-DArP as the only pathway for the C-H activation of the 5-BTz unit and a clear case demonstrating an advantage of Cu-DArP relative to Pd-DArP.

13.
J Phys Chem Lett ; 10(8): 1757-1762, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30908051

ABSTRACT

Molecular orientation at the donor-acceptor interface plays a crucial role in determining the efficiency of organic semiconductor materials. We have used vibrational sum frequency generation spectroscopy to determine the orientation of poly-3-hexylthiophene (P3HT) at the planar buried interface with fullerene (C60). The thiophene rings of P3HT have been found to tilt significantly toward C60, making an average angle θ ≈ 49° ± 10° between the plane of the ring and the interface. Such tilt may be attributed to π-π stacking interactions between P3HT and C60 and may facilitate efficient charge transfer between donor and acceptor. Upon annealing, the thiophene rings tilt away from the interface by Δθ = 12-19°. This may be attributed to higher crystallinity of annealed P3HT that propagates all the way to the interface, resulting in more "edge-on" orientation, which is consistent with the observed red-shift by ∼6 cm-1 and spectral narrowing of the C=C stretch bands.

14.
ACS Appl Mater Interfaces ; 10(38): 32426-32434, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30180546

ABSTRACT

An extensive family of semi-random polymers was prepared via Stille polycondensation with varying contents of alkyl spacers incorporated into the polymer backbone to serve as a break in conjugation. This family was investigated to determine the effect of alkyl spacer length and percent incorporation on the optical, electronic, and mechanical properties. The optical bandgap was found to steadily increase from 1.53 to 1.70 eV as the amount of spacer was increased from 10 mol percent to 40 mol percent while the length of the spacer had little to no effect. In space charge limited current (SCLC) carrier mobility measurements, hole mobility was found to decrease as the amount of spacer increased but was found to steadily increase as the length of the spacer was increased from 6 to 10 carbons. Mechanical properties were observed by film-on-elastomer and film-on-water measurements, with low elastic moduli and high ductility attributed both to the break in conjugation as well as the semi-random structure of the polymer backbone. Measurements of the mechanical properties using the buckling method revealed elastic moduli between 0.14 and 1.3 GPa, and several polymers, when bonded to an elastomeric substrate, could be stretched beyond 80% strain. These polymers were further tested as free-standing films by obtaining a pull test on the surface of water, where we obtained tensile moduli between 0.13 and 0.75 GPa. These results indicate that semi-random polymers with conjugation-break spacers are promising candidates for further study in flexible electronics.

15.
ACS Macro Lett ; 7(10): 1232-1236, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-35651260

ABSTRACT

Direct arylation polymerization (DArP) has enabled the more sustainable synthesis of conjugated polymers through the reduction of waste, elimination of toxic and hazardous byproducts, and through the reduction of overall synthetic steps. However, DArP methodologies have almost exclusively relied on the use of noble metal catalysts, such as those with Pd, counter to the efforts toward sustainability. Herein, we report the optimized synthesis of a flourinated arylene conjugated copolymer via DArP using a low-cost, sustainable copper catalyst. Through optimization of the polymerization conditions, we are able to lower the loading of the catalyst from 50 to 5 mol %. As an example, we are able to obtain molecular weights of 16.4 kDa, accompanied by a yield of 54%, with a loading of only 5 mol % for the Cu catalyst. The synthesized polymers were characterized using 1H and 19F NMR spectroscopy, showing agreement with those previously prepared with a minimization or exclusion of defects. This work also demonstrates that Cu-catalyzed DArP methodologies can be compatible with substrates that do not possess directing groups, which can help to facilitate C-H functionalization, allowing for a broadening of substrate scope.

16.
ACS Macro Lett ; 7(10): 1161-1167, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-35651268

ABSTRACT

Nonconjugated electroactive polymers (also known as pendant or side-chain electroactive polymers) promise several potential advantages relative to conjugated polymers including enhanced mechanical durability, greater stability and synthesis via living polymerization techniques. However, most previous examples suffer from low charge carrier mobility. Here, using poly(2-N-carbazoylethyl acrylate) (PCzEA) as a model polymer, we investigate the ability of side-chain tacticity to influence hole mobility. Specifically, we investigated polymers with dyad isotacticity (m) ranging from ∼45 to ∼95% synthesized by several methods including free radical polymerization and anionic polymerization. We found that the hole mobility (µh) measured via the space charge limited current (SCLC) technique increased proportionally to the increasing isotacticity from 2.11 × 10-6 cm2 V-1 s-1 (m = 45.5%) to 4.68 × 10-5 cm2 V-1 s-1 (m = 94.7%) in unannealed samples and that mobilities could be boosted as high as 2.74 × 10-4 cm2 V-1 s-1 (m = 94.7%) with thermal annealing, which rivaled the well-known conjugated polymer poly(3-hexylthiophene) (P3HT) (µh = 5.8 × 10-4 cm2 V-1 s-1). As such, we report here clear experimental evidence that control of side chain tacticity can enhance charge carrier mobility in nonconjugated pendant electroactive polymers, converging with mobilities typically only observed in conjugated polymers.

17.
Macromol Rapid Commun ; 38(22)2017 Nov.
Article in English | MEDLINE | ID: mdl-29028137

ABSTRACT

Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first ß-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material.


Subject(s)
Polymers/chemistry , Polymerization , Polymers/chemical synthesis , Quantum Theory , Solar Energy , Spectrophotometry
18.
ACS Appl Mater Interfaces ; 8(41): 27931-27941, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27660888

ABSTRACT

The compositional dependence of the open-circuit voltage (Voc) in ternary blend bulk heterojunction (BHJ) solar cells is correlated with the miscibility of polymers, which may be influenced by a number of attributes, including crystallinity, the random copolymer effect, or surface energy. Four ternary blend systems featuring poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT75-co-EHT25), poly(3-hexylthiophene-co-(hexyl-3-carboxylate)), herein referred to as poly(3-hexylthiophene-co-3-hexylesterthiophene) (P3HT50-co-3HET50), poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%), and an analog of P3HTT-DPP-10% with 40% of 3-hexylthiophene exchanged for 2-(2-methoxyethoxy)ethylthiophen-2-yl (3MEO-T) (featuring an electronically decoupled oligoether side-chain), referred to as P3HTTDPP-MEO40%, are explored in this work. All four polymers are semicrystalline and rich in rr-P3HT content and perform well in binary devices with PC61BM. Except for P3HTTDPP-MEO40%, all polymers exhibit similar surface energies (∼21-22 mN/m). P3HTTDPP-MEO40% exhibits an elevated surface energy of around 26 mN/m. As a result, despite the similar optoelectronic properties and binary solar cell performance of P3HTTDPP-MEO40% compared to P3HTT-DPP-10%, the former exhibits a pinned Voc in two different sets of ternary blend devices. This is a stark contrast to previous rr-P3HT-based systems and demonstrates that surface energy, and its influence on miscibility, plays a critical role in the formation of organic alloys and can supersede the influence of crystallinity, the random copolymer effect, similar backbone structures, and HOMO/LUMO considerations. Therefore, we confirm surface energy compatibility as a figure-of-merit for predicting the compositional dependence of the Voc in ternary blend solar cells and highlight the importance of polymer miscibility in organic alloy formation.

19.
ACS Macro Lett ; 5(8): 977-981, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-35607215

ABSTRACT

Alkyl solubilizing side chains on conjugated polymers can serve as a handle for modifying polymer properties. Recently, oligo-ether and semifluoro alkyl side chains were utilized to tune the surface energy of random P3HT-based polymers without changing the optical and electronic properties. Here, this method is applied to semi-random poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP) and the subsequent polymer device, optical, electronic, structural, and thermal properties are characterized. P3HTMETT-DPP, bearing oligo-ether side chains, exhibited higher crystallinity, closer lamellar packing, and lower temperature thermal transitions. P3HTFHTT-DPP, featuring semifluoro alkyl side chains, presented reduced crystallinity, greater lamellar packing distances, and higher temperature thermal transitions. P3HTMETT-DPP performed similarly to P3HTT-DPP under identical processing conditions, whereas P3HTFHTT-DPP had greatly reduced JSC due to lower polymer concentration necessitated by solubility.

20.
ACS Appl Mater Interfaces ; 7(4): 2322-30, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25590225

ABSTRACT

Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...