Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Pharm Technol ; 40(3): 134-141, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38784026

ABSTRACT

Background: Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a serious clinical infection associated with a high risk of mortality. Dual therapy is often used in patients with persistent bacteremia. Objective: This study aimed to compare the outcomes of vancomycin or daptomycin monotherapy with those of dual therapy with ceftaroline in high-grade or persistent MRSA bacteremia. Methods: We conducted a retrospective cohort study at a university teaching hospital between January 2014 and June 2021, involving adults initially treated with vancomycin or daptomycin. Patients were categorized into monotherapy and dual therapy groups. The primary outcome was 30-day mortality. Secondary outcomes included microbiological relapse and antibiotic-related adverse events. Results: In a group of 155 patients, 30-day mortality rates were similar between the monotherapy (23.4%) and dual therapy (22.6%) groups, with comparable microbiological relapse rates (6.5%). In inverse probability of treatment weighting analysis, we found no significant association between dual therapy and mortality (adjusted risk ratio [ARR] 1.38, 95% CI 0.64-2.41, P = 0.38) or microbiological relapse (ARR 0.95, 95% CI 0.31-2.73, P = 0.93). Dual therapy was associated with a lower risk of antibiotic-related adverse events (ARR 0.45, 95% CI 0.21-0.89, P = 0.02). Infectious diseases (ID) consultation was associated with a reduced mortality risk (ARR 0.27, 95% CI 0.07-0.95, P = 0.04). Conclusions: Dual therapy with ceftaroline did not reduce mortality risk compared with monotherapy in patients with MRSA bacteremia. However, patients with ID consultations showed a 73% reduction in mortality rates. Large-scale, prospective, and randomized controlled trials are needed to provide conclusive evidence regarding the potential benefits of dual therapy with ceftaroline for MRSA bacteremia.

2.
PLoS One ; 19(5): e0304103, 2024.
Article in English | MEDLINE | ID: mdl-38768130

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is associated with high mortality rates. Despite antibiotic therapy, persistent bacteremia is challenging to treat. Combination therapy with ceftaroline has emerged as a potential treatment option; however, the optimal duration and clinical implications after bacteremia clearance are unknown. METHODS: This retrospective cohort study examined patients with high-grade or persistent MRSA bacteremia who were treated with ceftaroline combination therapy at the University of New Mexico Hospital between January 2014 and June 2021. Patients were categorized into short- (<7 days) or long-duration (≥7 days) groups based on the duration of combination therapy after bacteremia clearance. Outcomes included 30-day all-cause mortality, bacteremia recurrence, post-bacteremia clearance length of stay, and adverse events. RESULTS: A total of 32 patients were included in this study. The most common sources of bacteremia were bone/joint and endovascular (28.1%, 9/32 each). The median duration of combination therapy after clearance was seven days (IQR 2.8, 11). Patients in the long-duration group had a lower Charlson comorbidity index (1.0 vs 5.5, p = 0.017) than those in the short-duration group. After adjusting for confounders, there was no significant difference in the 30-day all-cause mortality between the groups (AOR 0.17, 95% CI 0.007-1.85, p = 0.18). No association was found between combination therapy duration and recurrence (OR 2.53, 95% CI 0.19-inf, p = 0.24) or adverse drug events (OR 3.46, 95% CI 0.39-74.86, p = 0.31). After controlling for total hospital length of stay, there was no significant difference in the post-bacteremia clearance length of stay between the two groups (p = 0.37). CONCLUSIONS: Prolonging ceftaroline combination therapy after bacteremia clearance did not significantly improve outcomes in patients with persistent or high-grade MRSA bacteremia. The limitations of this study warrant cautious interpretation of its results. Larger studies are needed to determine the optimal duration and role of combination therapy for this difficult-to-treat infection.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Ceftaroline , Cephalosporins , Drug Therapy, Combination , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Male , Female , Bacteremia/drug therapy , Bacteremia/microbiology , Bacteremia/mortality , Retrospective Studies , Middle Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/mortality , Cephalosporins/therapeutic use , Cephalosporins/administration & dosage , Aged , Treatment Outcome
3.
PLoS One ; 16(12): e0260879, 2021.
Article in English | MEDLINE | ID: mdl-34890441

ABSTRACT

INTRODUCTION: Symptoms associated with SARS-CoV-2 infection remain incompletely understood, especially among ambulatory, non-hospitalized individuals. With host factors, symptoms predictive of SARS-CoV-2 could be used to guide testing and intervention strategies. METHODS: Between March 16 and September 3, 2020, we examined the characteristics and symptoms reported by individuals presenting to a large outpatient testing program in the Southeastern US for nasopharyngeal SARS-CoV-2 RNA RT-PCR testing. Using self-reported symptoms, demographic characteristics, and exposure and travel histories, we identified the variables associated with testing positive using modified Poisson regression. RESULTS: Among 20,177 tested individuals, the proportion positive was 9.4% (95% CI, 9.0-9.8) and was higher for men, younger individuals, and racial/ethnic minorities (all P<0.05); the positivity proportion was higher for Hispanics (26.9%; 95% CI. 24.9-29.0) compared to Blacks (8.6%; 95% CI, 7.6-9.7) or Whites (5.8%; 95% CI, 5.4-6.3). Individuals reporting contact with a COVID-19 case had the highest positivity proportion (22.8%; 95% CI, 21.5-24.1). Among the subset of 8,522 symptomatic adults who presented for testing after May 1, when complete symptom assessments were performed, SARS-CoV-2 RNA PCR was detected in 1,116 (13.1%). Of the reported symptoms, loss of taste or smell was most strongly associated with SARS-CoV-2 RNA detection with an adjusted risk ratio of 3.88 (95% CI, 3.46-4.35). The presence of chills, fever, cough, aches, headache, fatigue and nasal congestion also significantly increased the risk of detecting SARS-CoV-2 RNA, while diarrhea or nausea/vomiting, although not uncommon, were significantly more common in those with a negative test result. Symptom combinations were frequent with 67.9% experiencing ≥4 symptoms, including 19.8% with ≥8 symptoms; report of greater than three symptoms increased the risk of SARS-CoV-2 RNA detection. CONCLUSIONS: In a large outpatient population in the Southeastern US, several symptoms, most notably loss of taste or smell, and greater symptom burden were associated with detection of SARS-CoV-2 RNA. Persons of color and those with who were a contact of a COVID-19 case were also more likely to test positive. These findings suggest that, given limited SARS-CoV-2 testing capacity, symptom presentation and host characteristics can be used to guide testing and intervention prioritization.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , COVID-19/virology , Outpatients , SARS-CoV-2/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , RNA, Viral/genetics , Young Adult
6.
Mol Microbiol ; 111(1): 187-203, 2019 01.
Article in English | MEDLINE | ID: mdl-30299554

ABSTRACT

Nitric oxide (NO) is an important defense molecule secreted by the squid Euprymna scolopes and sensed by the bacterial symbiont, Vibrio fischeri, via the NO sensor HnoX. HnoX inhibits colonization through an unknown mechanism. The genomic location of hnoX adjacent to hahK, a recently identified positive regulator of biofilm formation, suggested that HnoX may inhibit colonization by controlling biofilm formation, a key early step in colonization. Indeed, the deletion of hnoX resulted in early biofilm formation in vitro, an effect that was dependent on HahK and its putative phosphotransfer residues. An allele of hnoX that encodes a protein with increased activity severely delayed wrinkled colony formation. Control occurred at the level of transcription of the syp genes, which produce the polysaccharide matrix component. The addition of NO abrogated biofilm formation and diminished syp transcription, effects that required HnoX. Finally, an hnoX mutant formed larger symbiotic biofilms. This work has thus uncovered a host-relevant signal controlling biofilm and a mechanism for the inhibition of biofilm formation by V. fischeri. The study of V. fischeri HnoX permits us to understand not only host-associated biofilm mechanisms, but also the function of HnoX domain proteins as regulators of important bacterial processes.


Subject(s)
Aliivibrio fischeri/drug effects , Aliivibrio fischeri/growth & development , Bacterial Proteins/metabolism , Biofilms/drug effects , Biofilms/growth & development , Gene Expression Regulation, Bacterial/drug effects , Nitric Oxide/metabolism , Bacterial Proteins/genetics , Gene Deletion , Gene Expression , Transcription, Genetic
7.
Appl Environ Microbiol ; 84(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30030225

ABSTRACT

Biofilms, complex communities of microorganisms surrounded by a self-produced matrix, facilitate attachment and provide protection to bacteria. A natural model used to study biofilm formation is the symbiosis between Vibrio fischeri and its host, the Hawaiian bobtail squid, Euprymna scolopes Host-relevant biofilm formation is a tightly regulated process and is observed in vitro only with strains that have been genetically manipulated to overexpress or disrupt specific regulators, primarily two-component signaling (TCS) regulators. These regulators control biofilm formation by dictating the production of the symbiosis polysaccharide (Syp-PS), the major component of the biofilm matrix. Control occurs both at and below the level of transcription of the syp genes, which are responsible for Syp-PS production. Here, we probed the roles of the two known negative regulators of biofilm formation, BinK and SypE, by generating double mutants. We also mapped and evaluated a point mutation using natural transformation and linkage analysis. We examined traditional biofilm formation phenotypes and established a new assay for evaluating the start of biofilm formation in the form of microscopic aggregates in shaking liquid cultures, in the absence of the known biofilm-inducing signal calcium. We found that wrinkled colony formation is negatively controlled not only by BinK and SypE but also by SypF. SypF is both required for and inhibitory to biofilm formation. Together, these data reveal that these three regulators are sufficient to prevent wild-type V. fischeri from forming biofilms under these conditions.IMPORTANCE Bacterial biofilms promote attachment to a variety of surfaces and protect the constituent bacteria from environmental stresses, including antimicrobials. Understanding the mechanisms by which biofilms form will promote our ability to resolve them when they occur in the context of an infection. In this study, we found that Vibrio fischeri tightly controls biofilm formation using three negative regulators; the presence of a single one of these regulators was sufficient to prevent full biofilm development, while disruption of all three permitted robust biofilm formation. This work increases our understanding of the functions of specific regulators and demonstrates the substantial negative control that one benign microbe exerts over biofilm formation, potentially to ensure that it occurs only under the appropriate conditions.


Subject(s)
Aliivibrio fischeri/physiology , Bacterial Proteins/metabolism , Biofilms , Decapodiformes/microbiology , Gene Expression Regulation, Bacterial , Histidine Kinase/metabolism , Phosphoric Monoester Hydrolases/metabolism , Aliivibrio fischeri/enzymology , Aliivibrio fischeri/genetics , Animals , Bacterial Proteins/genetics , Hawaii , Histidine Kinase/genetics , Phosphoric Monoester Hydrolases/genetics , Symbiosis
8.
J Bacteriol ; 200(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29463601

ABSTRACT

Vibrio fischeri uses biofilm formation to promote symbiotic colonization of its squid host, Euprymna scolopes Control over biofilm formation is exerted at the level of transcription of the symbiosis polysaccharide (syp) locus by a complex set of two-component regulators. Biofilm formation can be induced by overproduction of the sensor kinase RscS, which requires the activities of the hybrid sensor kinase SypF and the response regulator SypG and is negatively regulated by the sensor kinase BinK. Here, we identify calcium as a signal that promotes biofilm formation by biofilm-competent strains under conditions in which biofilms are not typically observed (growth with shaking). This was true for RscS-overproducing cells as well as for strains in which only the negative regulator binK was deleted. The latter results provided, for the first time, an opportunity to induce and evaluate biofilm formation without regulator overexpression. Using these conditions, we determined that calcium induces both syp-dependent and bacterial cellulose synthesis (bcs)-dependent biofilms at the level of transcription of these loci. The calcium-induced biofilms were dependent on SypF, but SypF's Hpt domain was sufficient for biofilm formation. These data suggested the involvement of another sensor kinase(s) and led to the discovery that both RscS and a previously uncharacterized sensor kinase, HahK, functioned in this pathway. Together, the data presented here reveal both a new signal and biofilm phenotype produced by V. fischeri cells, the coordinate production of two polysaccharides involved in distinct biofilm behaviors, and a new regulator that contributes to control over these processes.IMPORTANCE Biofilms, or communities of surface-attached microorganisms adherent via a matrix that typically includes polysaccharides, are highly resistant to environmental stresses and are thus problematic in the clinic and important to study. Vibrio fischeri forms biofilms to colonize its symbiotic host, making this organism useful for studying biofilms. Biofilm formation depends on the syp polysaccharide locus and its regulators. Here, we identify a signal, calcium, that induces both SYP-PS and cellulose-dependent biofilms. We also identify a new syp regulator, the sensor kinase HahK, and discover a mutant phenotype for the sensor kinase RscS. This work thus reveals a specific biofilm-inducing signal that coordinately controls two polysaccharides, identifies a new regulator, and clarifies the regulatory control over biofilm formation by V. fischeri.


Subject(s)
Aliivibrio fischeri/physiology , Bacterial Proteins/metabolism , Biofilms/growth & development , Calcium/pharmacology , Gene Expression Regulation, Bacterial/physiology , Aliivibrio fischeri/drug effects , Bacterial Proteins/genetics , Bacteriological Techniques
9.
Front Microbiol ; 8: 735, 2017.
Article in English | MEDLINE | ID: mdl-28450861

ABSTRACT

[This corrects the article on p. 760 in vol. 6, PMID: 26284045.].

10.
Front Microbiol ; 6: 760, 2015.
Article in English | MEDLINE | ID: mdl-26284045

ABSTRACT

Colonization of the squid Euprymna scolopes by Vibrio fischeri requires biofilm formation dependent on the 18-gene symbiosis polysaccharide locus, syp. One key regulator, SypA, controls biofilm formation by an as-yet unknown mechanism; however, it is known that SypA itself is regulated by SypE. Biofilm-proficient strains form wrinkled colonies on solid media, while sypA mutants form biofilm-defective smooth colonies. To begin to understand the function of SypA, we used comparative analyses and mutagenesis approaches. sypA (and the syp locus) is conserved in other Vibrios, including two food-borne human pathogens, Vibrio vulnificus (rbdA) and Vibrio parahaemolyticus (sypA VP ). We found that both homologs could complement the biofilm defect of the V. fischeri sypA mutant, but their phenotypes varied depending on the biofilm-inducing conditions used. Furthermore, while SypAVP retained an ability to be regulated by SypE, RbdA was resistant to this control. To better understand SypA function, we examined the biofilm-promoting ability of a number of mutant SypA proteins with substitutions in conserved residues, and found many that were biofilm-defective. The most severe biofilm-defective phenotypes occurred when changes were made to a conserved stretch of amino acids within a predicted α-helix of SypA; we hypothesize that this region of SypA may interact with another protein to promote biofilm formation. Finally, we identified a residue required for negative control by SypE. Together, our data provide insights into the function of this key biofilm regulator and suggest that the SypA orthologs may play similar roles in their native Vibrio species.

SELECTION OF CITATIONS
SEARCH DETAIL
...