Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Clin Chem ; 69(7): 711-717, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37086467

ABSTRACT

BACKGROUND: Large ß-globin gene cluster deletions (hereditary persistence of fetal hemoglobin [Hb] or ß-, δß-, γδß-, and ϵγδß-thalassemia), are associated with widely disparate phenotypes, including variable degrees of microcytic anemia and Hb F levels. When present, increased Hb A2 is used as a surrogate marker for ß-thalassemia. Notably, ϵγδß-thalassemias lack the essential regulatory locus control region (LCR) and cause severe transient perinatal anemia but normal newborn screen (NBS) results and Hb A2 levels. Herein, we report a novel deletion of the ϵ, Aγ, Gγ, and ψß loci with intact LCR, δ-, and ß-regions in 2 women and newborn twins. METHODS: Capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), DNA sequencing, multiplex ligation-dependent probe amplification (MLPA), gap-polymerase chain reaction (gap-PCR), and long-read sequencing (LRS) were performed. RESULTS: NBS showed an Hb A > Hb F pattern for both twins. At 20 months, Hb A2 was increased similarly to that in the mother and an unrelated woman. Unexplained microcytosis was absent and the twins lacked severe neonatal anemia. MLPA, LRS, and gap-PCR confirmed a 32 599 base pair deletion of ϵ (HBE1) through ψß (HBBP1) loci. CONCLUSIONS: This deletion represents a hemoglobinopathy category with a distinct phenotype that has not been previously described, an ϵγ-thalassemia. Both the NBS Hb A > F pattern and the subsequent increased Hb A2 without microcytosis are unusual. A similar deletion should be considered when this pattern is encountered and appropriate test methods selected for detection. Knowledge of the clinical impact of this new category will improve genetic counselling, with distinction from the severe transient anemia associated with ϵγδß-thalassemia.


Subject(s)
Hemoglobinopathies , Thalassemia , beta-Thalassemia , Humans , Female , Thalassemia/genetics , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics , Fetal Hemoglobin/genetics , Multiplex Polymerase Chain Reaction
3.
Curr Hematol Malig Rep ; 17(6): 266-274, 2022 12.
Article in English | MEDLINE | ID: mdl-36117229

ABSTRACT

PURPOSE OF REVIEW: Advances in the understanding of germline predisposition to pediatric cancers, particularly myeloid neoplasms, have increased rapidly over the last 20 years. Here, we highlight the most up-to-date knowledge regarding known pathogenic germline variants that contribute to the development of myeloid neoplasms in children. RECENT FINDINGS: This discussion enumerates the most notable myeloid neoplasm-causing germline mutations. These mutations may be organized based on their molecular underpinnings-transcriptional control, splicing and signal transduction control, and a group of heterogeneous bone marrow failure syndromes. We review recent findings related to the biochemical mechanisms that predispose to malignant transformation in each condition. Key genetic discoveries such as novel mutations, degrees of penetrance, principles of the two-hit hypothesis, and co-occurrence of multiple mutations are shared. Clinical pearls, such as information regarding epidemiology, natural history, or prognosis, are also discussed. Germline mutations predisposing to pediatric myeloid neoplasms are frequent, but underrecognized. They hold major clinical implications regarding prognosis, treatment strategies, and screening for other malignancies. Further research is warranted to better characterize each of these conditions, as well as identify additional novel germline pathogenic variants of interest.


Subject(s)
Hematologic Neoplasms , Myeloproliferative Disorders , Neoplasms , Child , Humans , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Genetic Predisposition to Disease , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Germ-Line Mutation , Germ Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...