Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 10: 961292, 2022.
Article in English | MEDLINE | ID: mdl-35874836

ABSTRACT

Well over 100 different viruses can infect the brain and cause brain inflammation. In the developing world, brain inflammation is a leading cause for epilepsy and often refractory to established anti-seizure drugs. Epilepsy generally results from an imbalance in excitatory glutamatergic and inhibitory GABAergic neurotransmission. GABAergic inhibition is determined by the intracellular Cl- concentration which is established through the opposing action of two cation chloride cotransporters namely NKCC1 and KCC2. Brain-derived neurotrophic factor (BDNF) signaling is known to regulate expression of KCC2. Hence we hypothesized that viral induced epilepsy may result from aberrant BDNF signaling. We tested this hypothesis using a mouse model of Theiler's murine encephalomyelitis virus (TMEV) infection-induced epilepsy. We found that BDNF levels in the hippocampus from TMEV-infected mice with seizures was increased at the onset of acute seizures and continued to increase during the peak of acute seizure as well as in latent and chronic phases of epilepsy. During the acute phase of epilepsy, we found significant reduction in the expression of KCC2 in hippocampus, whereas the level of NKCC1 was unaltered. Importantly, inhibiting BDNF using scavenging bodies of BDNF in live brain slices from TMEV-infected mice with seizures normalized the level of KCC2 in hippocampus. Our results suggest that BDNF can directly decrease the relative expression of NKCC1 and KCC2 such as to favor accumulation of chloride intracellularly which in turn causes hyperexcitability by reversing GABA-mediated inhibition. Although our attempt to inhibit the BDNF signaling mediated through tyrosine kinase B-phospholipase Cγ1 (TrkB-PLCγ1) using a small peptide did not change the course of seizure development following TMEV infection, alternative strategies for controlling the BDNF signaling could be useful in preventing seizure generation and development of epilepsy in this model.

2.
Physiol Rep ; 8(19): e14567, 2020 10.
Article in English | MEDLINE | ID: mdl-33026196

ABSTRACT

Epileptic seizures are among the most common presenting symptom in patients with glioma. The etiology of glioma-related seizures is complex and not completely understood. Studies using adult glioma patient tissue and adult glioma mouse models, show that neurons adjacent to the tumor mass, peritumoral neurons, are hyperexcitable and contribute to seizures. Although it is established that there are phenotypic and genotypic distinctions in gliomas from adult and pediatric patients, it is unknown whether these established differences in pediatric glioma biology and the microenvironment in which these glioma cells harbor, the developing brain, differentially impacts surrounding neurons. In the present study, we examine the effect of patient-derived pediatric glioma cells on the function of peritumoral neurons using two pediatric glioma models. Pediatric glioma cells were intracranially injected into the cerebrum of postnatal days 2 and 3 (p2/3) mouse pups for 7 days. Electrophysiological recordings showed that cortical layer 2/3 peritumoral neurons exhibited significant differences in their intrinsic properties compared to those of sham control neurons. Peritumoral neurons fired significantly more action potentials in response to smaller current injection and exhibited a depolarization block in response to higher current injection. The threshold for eliciting an action potential and pharmacologically induced epileptiform activity was lower in peritumoral neurons compared to sham. Our findings suggest that pediatric glioma cells increase excitability in the developing peritumoral neurons by exhibiting early onset of depolarization block, which was not previously observed in adult glioma peritumoral neurons.


Subject(s)
Brain Neoplasms/pathology , Epilepsy/pathology , Glioma/pathology , Neurons/pathology , Action Potentials , Animals , Child , Female , Humans , Male , Mice , Mice, SCID , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays
3.
Biofabrication ; 12(3): 035026, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32434163

ABSTRACT

3D bioprinting is an emerging biofabrication process for the production of adherent cell-based products, including engineered tissues and foods. While process innovations are rapidly occurring in the area of process monitoring, which can improve fundamental understanding of process-structure-property relations as well as product quality by closed-loop control techniques, in-line sensing of the bioink composition remains a challenge. Here, we report that hollow multifunctional fibers enable in-line impedimetric sensing of bioink composition and exhibit selectivity for real-time classification of cell type, viability, and state of differentiation during bioprinting. Continuous monitoring of the fiber impedance magnitude and phase angle response from 102 to 106 Hz during microextrusion 3D bioprinting enabled compositional and quality analysis of alginate bioinks that contained fibroblasts, neurons, or mouse embryonic stem cells (mESCs). Fiber impedimetric responses associated with the bioinks that contained differentiated mESCs were consistent with differentiation marker expression characterized by immunocytochemistry. 3D bioprinting through hollow multifunctional fiber impedimetric sensors enabled classification of stem cells as stable or randomly differentiated populations. This work reports an advance in monitoring 3D bioprinting processes in terms of in-line sensor-based bioink compositional analysis using fiber technology and provides a non-invasive sensing platform for achieving future quality-controlled bioprinted tissues and injectable stem-cell therapies.


Subject(s)
Bioprinting , Biosensing Techniques , Electric Impedance , Printing, Three-Dimensional , Animals , Cell Differentiation , Cell Survival , Electrodes , Ink , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , PC12 Cells , Rats , Signal Transduction , Stem Cells/cytology
4.
Adv Biosyst ; 4(1): e1900225, 2020 01.
Article in English | MEDLINE | ID: mdl-32293127

ABSTRACT

Here, a 3D printed multiplexed competitive migration assay is reported for characterizing a chemotactic response in the presence of multiple spatially distributed chemoattractants. The utility of the assay is demonstrated by examining the chemotactic response of human glioblastoma cells to spatially opposing chemotactic gradients of epidermal growth factor (EGF) and bradykinin (BK). Competitive migration assays involving spatially opposing gradients of EGF and BK that are optimized in the absence of the second chemoattractant show that 46% more glioblastoma cells migrate toward EGF sources. The migration velocities of human glioblastoma cells toward EGF and BK sources are reduced by 7.6 ± 2.2% and 11.6 ± 6.3% relative to those found in the absence of the spatially opposing chemoattractant. This work provides new insight to the chemotactic response associated with glioblastoma-vasculature interactions and a versatile, user-friendly platform for characterizing the chemotactic response of cells in the presence of multiple spatially distributed chemoattractants.


Subject(s)
Cell Migration Assays , Chemotactic Factors/pharmacology , Chemotaxis/drug effects , Printing, Three-Dimensional , Bradykinin/pharmacology , Cell Line, Tumor , Cell Migration Assays/instrumentation , Cell Migration Assays/methods , Epidermal Growth Factor/pharmacology , Equipment Design , Glioblastoma , Humans , Microfluidic Analytical Techniques/instrumentation
5.
Cells ; 8(10)2019 10 05.
Article in English | MEDLINE | ID: mdl-31590360

ABSTRACT

Grade IV astrocytomas, or glioblastomas (GBMs), are the most common malignant primary brain tumor in adults. The median GBM patient survival of 12-15 months has remained stagnant, in spite of treatment strategies, making GBMs a tremendous challenge clinically. This is at least in part due to the complex interaction of GBM cells with the brain microenvironment and their tendency to aggressively infiltrate normal brain tissue. GBMs frequently invade supratentorial brain regions that are richly innervated by neurotransmitter projections, most notably acetylcholine (ACh). Here, we asked whether ACh signaling influences the biology of GBMs. We examined the expression and function of known ACh receptors (AChRs) in large GBM datasets, as well as, human GBM cell lines and patient-derived xenograft lines. Using RNA-Seq data from the "The Cancer Genome Atlas" (TCGA), we confirmed the expression of AChRs and demonstrated the functionality of these receptors in GBM cells with time-lapse calcium imaging. AChR activation did not alter cell proliferation or migration, however, it significantly increased cell invasion through complex extracellular matrices. This was due to the enhanced activity of matrix metalloproteinase-9 (MMP-9) from GBM cells, which we found to be dependent on an intracellular calcium-dependent mechanism. Consistent with these findings, AChRs were significantly upregulated in regions of GBM infiltration in situ (Ivy Glioblastoma Atlas Project) and elevated expression of muscarinic AChR M3 correlated with reduced patient survival (TCGA). Data from the Repository for Molecular Brain Neoplasia Data (REMBRANDT) dataset also showed the co-expression of choline transporters, choline acetyltransferase, and vesicular acetylcholine transporters, suggesting that GBMs express all the proteins required for ACh synthesis and release. These findings identify ACh as a modulator of GBM behavior and posit that GBMs may utilize ACh as an autocrine signaling molecule.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Receptors, Cholinergic/metabolism , Animals , Cell Line, Tumor , Datasets as Topic , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Neoplasm Invasiveness , Receptors, Cholinergic/genetics
6.
Biofabrication ; 11(2): 025009, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30695770

ABSTRACT

A bio-inspired hydrogel for 3D bioprinting of soft free-standing neural tissues is presented. The novel filler-free bioinks were designed by combining natural polymers for extracellular matrix biomimicry with synthetic polymers to endow desirable rheological properties for 3D bioprinting. Crosslinking of thiolated Pluronic F-127 with dopamine-conjugated (DC) gelatin and DC hyaluronic acid through a thiol-catechol reaction resulted in thermally gelling bioinks with Herschel-Bulkley fluid rheological behavior. Microextrusion 3D bioprinting was used to fabricate free-standing cell-laden tissue constructs. The bioinks exhibited flattened parabolic velocity profiles with tunable low shear regions. Two pathways were investigated for curing the bioink: chelation and photocuring. The storage modulus of the cured bioinks ranged from 6.7 to 11.7 kPa. The iron (III) chelation chemistry produced crosslinked neural tissues of relatively lower storage modulus than the photocuring approach. In vitro cell viability studies using the 3D bioprinted neural tissues showed that the cured bioink was biocompatible based on minimal cytotoxic response observed over seven days in culture relative to control studies using alginate hydrogels. Rodent Schwann cell-, rodent neuronal cell-, and human glioma cell-laden tissue constructs were printed and cultured over seven days and exhibited comparable viability relative to alginate bioink controls. The ability to fabricate soft, free-standing 3D neural tissues with low modulus has implications in the biofabrication of microphysiological neural systems for disease modeling as well as neural tissues and innervated tissues for regenerative medicine.


Subject(s)
Biomimetics , Hydrogels/chemistry , Nerve Tissue/physiology , Neuroglia/physiology , Printing, Three-Dimensional , Animals , Bioprinting , Brain/physiology , Cell Line, Tumor , Finite Element Analysis , Humans , Ink , Phase Transition , Poloxamer/chemistry , Rats , Rheology , Temperature , Tissue Engineering
7.
ACS Nano ; 11(7): 6574-6585, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28570813

ABSTRACT

Microelectrodes provide a direct pathway to investigate brain activities electrically from the external world, which has advanced our fundamental understanding of brain functions and has been utilized for rehabilitative applications as brain-machine interfaces. However, minimizing the tissue response and prolonging the functional durations of these devices remain challenging. Therefore, the development of next-generation microelectrodes as neural interfaces is actively progressing from traditional inorganic materials toward biocompatible and functional organic materials with a miniature footprint, good flexibility, and reasonable robustness. In this study, we developed a miniaturized all polymer-based neural probe with carbon nanofiber (CNF) composites as recording electrodes via the scalable thermal drawing process. We demonstrated that in situ CNF unidirectional alignment can be achieved during the thermal drawing, which contributes to a drastic improvement of electrical conductivity by 2 orders of magnitude compared to a conventional polymer electrode, while still maintaining the mechanical compliance with brain tissues. The resulting neural probe has a miniature footprint, including a recording site with a reduced size comparable to a single neuron and maintained impedance that was able to capture neural activities. Its stable functionality as a chronic implant has been demonstrated with the long-term reliable electrophysiological recording with single-spike resolution and the minimal tissue response over the extended period of implantation in wild-type mice. Technology developed here can be applied to basic chronic electrophysiological studies as well as clinical implementation for neuro-rehabilitative applications.

8.
Eur Biophys J ; 45(7): 635-648, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27424110

ABSTRACT

Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuropeptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials.


Subject(s)
Blood Vessels/pathology , Glioma/metabolism , Glioma/pathology , Ion Channels/metabolism , Animals , Biological Transport , Cell Size , Glioma/blood supply , Humans , Neoplasm Invasiveness
9.
Cell Res ; 25(8): 891-2, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26032268

ABSTRACT

Stem cells present in the adult brain are regulated by neuronal activity; malignant gliomas, which most likely originate from this population of cells, could also be regulated in this manner. A recent study by Venkatesh et al. published in Cell has identified Neuroligin-3 (NLGN3) as a mitogen promoting high-grade glioma growth.


Subject(s)
Brain Neoplasms/pathology , Cell Adhesion Molecules, Neuronal/metabolism , Cell Proliferation , Glioma/pathology , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Humans , Male
10.
J Biol Rhythms ; 29(4): 257-76, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25238855

ABSTRACT

Circadian clocks are cell autonomous, transcriptionally based, molecular mechanisms that confer the selective advantage of anticipation, enabling cells/organs to respond to environmental factors in a temporally appropriate manner. Critical to circadian clock function are 2 transcription factors, CLOCK and BMAL1. The purpose of the present study was to reveal novel physiologic functions of BMAL1 in the heart, as well as to determine the pathologic consequences of chronic disruption of this circadian clock component. To address this goal, we generated cardiomyocyte-specific Bmal1 knockout (CBK) mice. Following validation of the CBK model, combined microarray and in silico analyses were performed, identifying 19 putative direct BMAL1 target genes, which included a number of metabolic (e.g., ß-hydroxybutyrate dehydrogenase 1 [Bdh1]) and signaling (e.g., the p85α regulatory subunit of phosphatidylinositol 3-kinase [Pik3r1]) genes. Results from subsequent validation studies were consistent with regulation of Bdh1 and Pik3r1 by BMAL1, with predicted impairments in ketone body metabolism and signaling observed in CBK hearts. Furthermore, CBK hearts exhibited depressed glucose utilization, as well as a differential response to a physiologic metabolic stress (i.e., fasting). Consistent with BMAL1 influencing critical functions in the heart, echocardiographic, gravimetric, histologic, and molecular analyses revealed age-onset development of dilated cardiomyopathy in CBK mice, which was associated with a severe reduction in life span. Collectively, our studies reveal that BMAL1 influences metabolism, signaling, and contractile function of the heart.


Subject(s)
ARNTL Transcription Factors/metabolism , Heart/physiology , Myocytes, Cardiac/metabolism , Signal Transduction/physiology , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Glucose/metabolism , Ketone Bodies/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...