Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(8): e0255298, 2021.
Article in English | MEDLINE | ID: mdl-34407114

ABSTRACT

Resource selection is a key component in understanding the ecological processes underlying population dynamics, particularly for species such as northern bobwhite (Colinus virginianus), which are declining across their range in North America. There is a growing body of literature quantifying breeding season resource selection in bobwhite; however, winter information is particularly sparse despite it being a season of substantial mortality. Information regarding winter resource selection is necessary to quantify the extent to which resource requirements are driving population change. We modeled bobwhite fall and winter resource selection as a function of vegetation structure, composition, and management from traditionally (intensively) managed sites and remnant (extensively managed) grassland sites in southwest Missouri using multinomial logit discrete choice models in a Bayesian framework. We captured 158 bobwhite from 67 unique coveys and attached transmitters to 119 individuals. We created 671 choice sets comprised of 1 used location and 3 available locations. Bobwhite selected for locations which were closer to trees during the winter; the relative probability of selection decreased from 0.45 (85% Credible Interval [CRI]: 0.17-0.74) to 0.00 (85% CRI: 0.00-0.002) as distance to trees ranged from 0-313 m. The relative probability of selection increased from near 0 (85% CRI: 0.00-0.01) to 0.33 (85% CRI: 0.09-0.56) and from near 0 (85% CRI: 0.00-0.00) to 0.51 (85% CRI: 0.36-0.71) as visual obstruction increased from 0 to 100% during fall and winter, respectively. Bobwhite also selected locations with more woody stems; the relative probability of selection increased from near 0.00 (85% CRI: 0.00-0.002) to 0.30 (85% CRI: 0.17-0.46) and near 0.00 (85% CRI: 0.00-0.001) to 0.35 (85% CRI: 0.22-0.55) as stem count ranged from 0 to 1000 stems in fall and winter, respectively. The relative probability of selection also decreased from 0.35 (85% CRI: 0.20-0.54) to nearly 0 (85% CRI: 0.00-0.001) as percent grass varied from 0 to 100% in fall. We suggest that dense shrub cover in close proximity to native grasslands is an important component of fall and winter cover given bobwhite selection of shrub cover and previously reported survival benefits in fall and winter.


Subject(s)
Colinus , Animals , Bayes Theorem , Grassland , Seasons
2.
Oecologia ; 195(4): 937-948, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33677683

ABSTRACT

Resource selection is a dynamic process driven by habitat valuation and risk avoidance in heterogeneous landscapes. Resource selection and movement decisions of individuals may be sensitive to intrinsic factors, such as body condition, and variation in these choices may have consequences on subsequent survival. We evaluated northern bobwhite (Colinus virginianus) brood resource selection patterns to quantify utility of different cover types during the development period using integrated step-selection analysis in a Bayesian hierarchical modeling framework with three brood stages: flightless broods ≤ 14 days old, dependent broods 15-35 days old, and independent broods over 35 days old. Broods showed strongest selection for native grasslands that were burned and grazed at least once in the previous two years, and agricultural fields. Brood mobility improved with age; broods > 35 days old travelled farther on average and took daily steps > 200 m more frequently than younger broods. Young broods ≤ 14 days old did not select for idle native grasslands, while broods > 35 days old did select for that cover type. Young broods also selected areas farther from trees compared to older broods. We evaluated the survival consequences of resource selection by comparing patterns in choices of broods that succeeded to choices of broods that failed to survive to 35 days. Successful broods chose habitats with more shrub cover and areas farther from trees compared to failed broods. Our results suggest that conservation planning should consider age-specific patterns in habitat use and demographic consequences of habitat choice for greatest effectiveness.


Subject(s)
Colinus , Animals , Bayes Theorem , Ecosystem
3.
Sci Total Environ ; 634: 1214-1221, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29710627

ABSTRACT

Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear-1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates.


Subject(s)
Climate Change , Environmental Monitoring , Forests , Trees/physiology , Plant Dispersal
4.
Ecol Evol ; 7(22): 9557-9566, 2017 11.
Article in English | MEDLINE | ID: mdl-29187989

ABSTRACT

Predicting the effects of global climate change on species interactions has remained difficult because there is a spatiotemporal mismatch between regional climate models and microclimates experienced by organisms. We evaluated resource selection in a predominant ectothermic predator using a modeling approach that permitted us to assess the importance of habitat structure and local real-time air temperatures within the same modeling framework. We radio-tracked 53 western ratsnakes (Pantherophis obsoletus) from 2010 to 2013 in central Missouri, USA, at study sites where this species has previously been linked to prey population demographics. We used Bayesian discrete choice models within an information theoretic framework to evaluate the seasonal effects of fine-scale vegetation structure and thermal conditions on ratsnake resource selection. Ratsnake resource selection was influenced most by canopy cover, canopy cover heterogeneity, understory cover, and air temperature heterogeneity. Ratsnakes generally preferred habitats with greater canopy heterogeneity early in the active season, and greater temperature heterogeneity later in the season. This seasonal shift potentially reflects differences in resource requirements and thermoregulation behavior. Predicted patterns of space use indicate that ratsnakes preferentially selected open habitats in spring and early summer and forest-field edges throughout the active season. Our results show that downscaled temperature models can be used to enhance our understanding of animal resource selection at scales that can be addressed by managers. We suggest that conservation of snakes or their prey in a changing climate will require consideration of fine-scale interactions between local air temperatures and habitat structure.

5.
PLoS One ; 12(6): e0179524, 2017.
Article in English | MEDLINE | ID: mdl-28614414

ABSTRACT

Habitat selection is a fundamental component of community ecology, population ecology, and evolutionary biology and can be especially important to species with complex annual habitat requirements, such as migratory birds. Resource preferences on the breeding grounds may change during the postfledging period for migrant songbirds, however, the degree to which selection changes, timing of change, and whether all or only a few species alter their resource use is unclear. We compared resource selection for nest sites and resource selection by postfledging juvenile ovenbirds (Seiurus aurocapilla) and Acadian flycatchers (Empidonax virescens) followed with radio telemetry in Missouri mature forest fragments from 2012-2015. We used Bayesian discrete choice modeling to evaluate support for local vegetation characteristics on the probability of selection for nest sites and locations utilized by different ages of postfledging juveniles. Patterns of resource selection variation were species-specific. Resource selection models indicated that Acadian flycatcher habitat selection criteria were similar for nesting and dependent postfledging juveniles and selection criteria diverged when juveniles became independent from adults. After independence, flycatcher resource selection was more associated with understory foliage density. Ovenbirds differed in selection criteria between the nesting and postfledging periods. Fledgling ovenbirds selected areas with higher densities of understory structure compared to nest sites, and the effect of foliage density on selection increased as juveniles aged and gained independence. The differences observed between two sympatric forest nesting species, in both the timing and degree of change in resource selection criteria over the course of the breeding season, illustrates the importance of considering species-specific traits and postfledging requirements when developing conservation efforts, especially when foraging guilds or prey bases differ. We recommend that postfledging habitat selection be considered in future conservation efforts dealing with Neotropical migrants and other forest breeding songbirds.


Subject(s)
Animal Migration/physiology , Feeding Behavior/physiology , Flight, Animal/physiology , Forests , Nesting Behavior/physiology , Songbirds/physiology , Animals , Bayes Theorem , Breeding , Ecosystem , Female , Male , Missouri , Seasons , Songbirds/classification , Species Specificity , Trees/classification , Trees/growth & development
6.
Sci Rep ; 7: 41821, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165483

ABSTRACT

The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using one representative model for each of the simple, intermediate, and complex demographic approaches (ED2, LANDIS PRO, and LINKAGES, respectively). All approaches agreed that the current carbon sink would persist at least to 2100. However, carbon dynamics after current carbon sink diminishes to zero differ for different demographic modelling approaches. Both the simple and the complex demographic approaches predicted prolonged periods of relatively stable carbon densities after 2100, with minor declines, until the end of simulations in 2300. In contrast, the intermediate demographic approach predicted the CHF would become a carbon source between 2110 and 2260, followed by another carbon sink period. The disagreement between these patterns can be partly explained by differences in the capacity of models to simulate gross growth (both birth and subsequent growth) and mortality of short-lived, relatively shade-intolerant tree species.


Subject(s)
Carbon Cycle , Carbon/chemistry , Forests , Computer Simulation , Demography , Ecosystem , Models, Theoretical , Reproducibility of Results , United States
7.
Oecologia ; 178(4): 1251-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25842295

ABSTRACT

Forecasting the effects of climate change on threatened ecosystems and species will require an understanding of how weather influences processes that drive population dynamics. We have evaluated weather effects on activity patterns of western ratsnakes, a widespread predator of birds and small mammals in eastern North America. From 2010-2013 we radio-tracked 53 ratsnakes in the fragmented region of central Missouri. We relocated each snake 4× per week and used movement frequency as an index of activity. We used generalized linear mixed models within an information-theoretic approach to evaluate temporal and weather variables as potential predictors of snake activity. While snakes were generally sedentary, activity showed a linear response to relative humidity and a quadratic response to air temperature, peaking near 30 °C. Seasonal activity patterns differed between sexes and among years, but snakes were generally least active in mid-summer, regardless of weather. Our findings provide strong evidence that air temperature and relative humidity differentially affect activity patterns of an important predator and are the mechanism explaining increased nest predation rates with warmer temperatures.


Subject(s)
Colubridae/physiology , Predatory Behavior/physiology , Weather , Animals , Climate Change , Ecosystem , Female , Male , Missouri , Population Dynamics , Seasons , Snakes/physiology , Telemetry , Temperature , United States
8.
PLoS One ; 10(3): e0117216, 2015.
Article in English | MEDLINE | ID: mdl-25775182

ABSTRACT

Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model's potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3-5 surveys each spring and fall 2010-2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability.


Subject(s)
Animal Migration , Models, Statistical , Seasons , Animals , Time Factors , Urodela
9.
Glob Chang Biol ; 19(4): 1064-74, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23504884

ABSTRACT

Increased temperatures and more extreme weather patterns associated with global climate change can interact with other factors that regulate animal populations, but many climate change studies do not incorporate other threats to wildlife in their analyses. We used 20 years of nest-monitoring data from study sites across a gradient of habitat fragmentation in Missouri, USA, to investigate the relative influence of weather variables (temperature and precipitation) and landscape factors (forest cover and edge density) on the number of young produced per nest attempt (i.e., productivity) for three species of songbirds. We detected a strong forest cover × temperature interaction for the Acadian Flycatcher (Empidonax virescens) on productivity. Greater forest cover resulted in greater productivity because of reduced brood parasitism and increased nest survival, whereas greater temperatures reduced productivity in highly forested landscapes because of increased nest predation but had no effect in less forested landscapes. The Indigo Bunting (Passerina cyanea) exhibited a similar pattern, albeit with a marginal forest cover × temperature interaction. By contrast, productivity of the Northern Cardinal (Cardinalis cardinalis) was not influenced by landscape effects or temperature. Our results highlight a potential difficulty of managing wildlife in response to global change such as habitat fragmentation and climate warming, as the habitat associated with the greatest productivity for flycatchers was also that most negatively influenced by high temperatures. The influence of high temperatures on nest predation (and therefore, nest predators) underscores the need to acknowledge the potential complexity of species' responses to climate change by incorporating a more thorough consideration of community ecology in the development of models of climate impacts on wildlife.


Subject(s)
Songbirds/physiology , Temperature , Animals , Climate , Missouri
10.
PLoS One ; 7(10): e47591, 2012.
Article in English | MEDLINE | ID: mdl-23077647

ABSTRACT

Many songbird species have experienced significant population declines, partly because of brood parasitism by the Brown-headed Cowbird (Molothrus ater), which is positively associated with increasing landscape forest cover in the midwestern United States. However, cowbirds are also experiencing long-term population declines, which should reduce parasitism pressure and thus increase productivity of host species. We used 20 years of nest monitoring data from five sites in Missouri across a gradient of landscape forest cover to assess temporal trends in the rate and intensity of brood parasitism for Acadian Flycatchers (Empidonax virescens), Indigo Buntings (Passerina cyanea), and Northern Cardinals (Cardinalis cardinalis). We evaluated whether there were concomitant changes in fledging brood size, nest survival, a combination of the two metrics (i.e., host young produced per nest attempt), and whether such changes were more substantial with decreasing landscape forest cover. Parasitism rates and intensities declined substantially during 1991-2010. Fledging brood size and nest survival rates were positively associated with landscape forest cover, confirming the fragmentation hypothesis for Midwest forest birds. Declining parasitism rates were associated with increased fledging brood sizes, with more pronounced increases as landscape forest cover decreased. Nest survival increased insubstantially across time during laying and incubation, but not during the nestling stage. The best predictor of nest survival was parasitism status, with parasitized nests surviving at lower rates than unparasitized nests. Overall, productivity increased during 1991-2010, with more pronounced increases associated with lower levels of landscape forest cover. The negative effects of cowbirds on nest survival in addition to fledging brood size in less forested landscapes suggest that cowbirds may be a primary cause of forest fragmentation effects on songbird productivity in the Midwest. Our results underscore the dynamic nature of demographic parameters, which should be accounted for in predictive models of wildlife responses to future environmental conditions.


Subject(s)
Behavior, Animal/physiology , Passeriformes/physiology , Songbirds/physiology , Trees , Animals , Ecosystem , Environment , Midwestern United States , Missouri , Nesting Behavior/physiology
11.
Environ Manage ; 48(6): 1061-5, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22075940

ABSTRACT

With 207 million ha of forest covering 22% of its land area, China ranks fifth in the world in forest area. Rapid economic growth, climate change, and forest disturbances pose new, complex challenges for forest research and management. Progress in meeting these challenges is relevant beyond China, because China's forests represent 34% of Asia's forests and 5% of the worlds' forests. To provide a broader understanding of these management challenges and of research and policies that address them, we organized this special issue on contemporary forest research and management issues in China. At the national level, papers review major forest types and the evolution of sustainable forestry, the development of China's forest-certification efforts, the establishment of a forest inventory system, and achievements and challenges in insect pest control in China. Papers focused on Northern China address historical, social, and political factors that have shaped the region's forests; the use of forest landscape models to assess how forest management can achieve multiple objectives; and analysis and modeling of fuels and fire behavior. Papers addressing Central and South China describe the "Grain for Green" program, which converts low productivity cropland to grassland and woodland to address erosion and soil carbon sequestration; the potential effects of climate change on CO(2) efflux and soil respiration; and relationships between climate and net primary productivity. China shares many forest management and research issues with other countries, but in other cases China's capacity to respond to forest management challenges is unique and bears watching by the rest of the world.


Subject(s)
Environment , Forestry/trends , China , Climate Change , Environmental Policy , Geography
12.
Ecol Appl ; 21(6): 2269-82, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21939060

ABSTRACT

Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P < 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose (conservation planning for a particular species in a particular geography) yield different answers and thus different conservation strategies. We assert that using only one habitat model (even if validated) as the foundation of a conservation plan is risky. Using multiple models (i.e., ensemble prediction) can reduce uncertainty and increase efficacy of conservation action when models corroborate one another and increase understanding of the system when they do not.


Subject(s)
Birds/physiology , Conservation of Natural Resources/methods , Ecosystem , Models, Biological , Models, Statistical , Animals , United States
13.
Ecol Appl ; 20(2): 398-418, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20405795

ABSTRACT

Migratory bird needs must be met during four phases of the year: breeding season, fall migration, wintering, and spring migration; thus, management may be needed during all four phases. The bulk of research and management has focused on the breeding season, although several issues remain unsettled, including the spatial extent of habitat influences on fitness and the importance of habitat on the breeding grounds used after breeding. Although detailed investigations have shed light on the ecology and population dynamics of a few avian species, knowledge is sketchy for most species. Replication of comprehensive studies is needed for multiple species across a range of areas, Information deficiencies are even greater during the wintering season, when birds require sites that provide security and food resources needed for survival and developing nutrient reserves for spring migration and, possibly, reproduction. Research is needed on many species simply to identify geographic distributions, wintering sites, habitat use, and basic ecology. Studies are complicated, however, by the mobility of birds and by sexual segregation during winter. Stable-isotope methodology has offered an opportunity to identify linkages between breeding and wintering sites, which facilitates understanding the complete annual cycle of birds. The twice-annual migrations are the poorest-understood events in a bird's life. Migration has always been a risky undertaking, with such anthropogenic features as tall buildings, towers, and wind generators adding to the risk. Species such as woodland specialists migrating through eastern North America have numerous options for pausing during migration to replenish nutrients, but some species depend on limited stopover locations. Research needs for migration include identifying pathways and timetables of migration, quality and distribution of habitats, threats posed by towers and other tall structures, and any bottlenecks for migration. Issues such as human population growth, acid deposition, climate change, and exotic diseases are global concerns with uncertain consequences to migratory birds and even less-certain remedies. Despite enormous gaps in our understanding of these birds, research, much of it occurring in the past 30 years, has provided sufficient information to make intelligent conservation efforts but needs to expand to handle future challenges.


Subject(s)
Animal Migration/physiology , Birds/growth & development , Birds/physiology , Conservation of Natural Resources/methods , Animals , Models, Theoretical , Population Dynamics
14.
Ecology ; 90(6): 1620-30, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19569376

ABSTRACT

Migration presents a trade-off for individuals between the potential fitness benefits of reaching high-quality habitat vs. the potential costs of migration. Within an information-theoretic framework, we examined the costs of migration for adult wood frogs (Rana sylvatica) in response to timber harvest and annual weather conditions using Cox proportional-hazard estimates of survival. In 2004 prior to timber harvest, survival did not differ between the inside (0.75, SE = 0.078) and outside (0.73, SE = 0.235) of the circular timber harvest arrays (each 164 m radius). Following timber harvest, survival inside arrays in both 2005 and 2006 (0.22, SE = 0.065; 0.42, SE = 0.139) was lower than survival outside of the arrays and prior to harvest. Sources of mortality included predation in all years and desiccation in the drought year of 2005. The most-supported models for explaining both predation and desiccation risks reflected behaviors as opposed to timber harvest or weather conditions. Both predation and desiccation risks increased when frogs made frequent movements or were located near breeding ponds. Optimal behaviors for reducing predation and desiccation risks were the same before and after timber harvest; however, the survival consequences for not adopting these behaviors were more severe following harvest. Our results provide empirical evidence for (1) the ecological pressures that influence migratory behavior and (2) differential survival in relation to migratory behavior which reveals why frogs move relatively long distances away from breeding sites.


Subject(s)
Animal Migration/physiology , Droughts , Forestry , Ranidae/physiology , Animals , Breeding , Dehydration , Female , Male , Population Dynamics , Reproduction/physiology
15.
Ecology ; 88(7): 1803-12, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17645026

ABSTRACT

Climate change is thought to promote the poleward movement of geographic ranges; however, the spatial dynamics, mechanisms, and regional anthropogenic drivers associated with these trends have not been fully explored. We estimated changes in latitude of northern range boundaries, center of occurrence, and center of abundance for 254 species of winter avifauna in North America from 1975 to 2004. After accounting for the effect of range size and the location of the northern boundary, positive latitudinal trends were evident for the northern boundary (1.48 km/yr), center of occurrence (0.45 km/yr), and center of abundance (1.03 km/yr). The northern boundary, when examined across individual species, had the most variable trends (SD = 7.46 km/yr) relative to the center of occurrence (SD = 2.36 km/yr) and center of abundance (SD = 5.57 km/yr). Trends did not differ based on migratory status, but there was evidence that trends differed for species with ranges centered in the southern vs. northern portion of the study area. Species occurred more sporadically over time at northern range boundaries, and northern boundaries were associated with a concentration of colonization and extirpation events, with a greater prevalence of colonization events likely promoting poleward trends. Regional anthropogenic drivers explained approximately 8% of the trend for the northern boundary, 14% for the center of occurrence, and 18% for the center of abundance; however, these effects were localized in the northern portion of species' ranges and were associated with distributional changes within ranges, primarily abundance, producing patterns that mimicked poleward movements. We conclude that poleward distributional shifts represent the interaction between climate change and regional factors whose outcome is determined by the scale of the analysis and the biotic and abiotic features in the region, and how anthropogenic activities have impacted these features.


Subject(s)
Animal Migration , Birds/physiology , Geography , Seasons , Animals , Greenhouse Effect , North America , Population Dynamics
16.
Ecol Appl ; 16(1): 394-405, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16705988

ABSTRACT

Many studies have examined differences in avian community composition between urban and rural habitats, but few, if any, have looked at nesting success of urban shrubland birds in a replicated fashion while controlling for habitat. We tested factors affecting nest survival, parasitism by the Brown-headed Cowbird (Molothrus ater), and species abundance in shrubland habitat in rural and urban landscapes. We found no support for our hypothesis that nest survival was lower in urban landscapes, but strong support for the hypothesis that survival increased with nest height. We found strong support for our hypothesis that cowbird parasitism was greater in urban than rural landscapes; parasitism in urban sites was at least twice that of rural sites. We found strong support for an urban landscape effect on abundance for several species; Northern Cardinal (Cardinalis cardinalis) and Brown-headed Cowbirds were more abundant in urban landscapes, whereas Field Sparrow (Spizella pusilla) and Blue-winged Warbler (Vermivora pinus) were more abundant in rural sites. There was support for lower abundances of Blue-gray Gnatcatcher (Polioptila caerulea) and Indigo Bunting (Passerina cyanea) with increased housing density. For six other species, edge and trail density or vegetation parameters best explained abundance. Lower abundances and greater parasitism in habitat patches in urban landscapes are evidence that, for some species, these urban landscapes do not fulfill the same role as comparable habitats in rural landscapes. Regional bird conservation planning and local habitat management in urban landscapes may need to consider these effects in efforts to sustain bird populations at regional and local scales.


Subject(s)
Cities , Forestry , Nematoda/physiology , Songbirds/physiology , Animals , Biodiversity , Environment , Geography , Missouri , Nematoda/classification , Nesting Behavior , Phylogeny , Population Dynamics , Predatory Behavior , Songbirds/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...