Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
4.
Microsc Microanal ; : 1-6, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35067265

ABSTRACT

The effect of sample preparation on a pre-aged Al­Mg­Si­Cu alloy has been evaluated using atom probe tomography. Three methods of preparation were investigated: electropolishing (control), Ga+ focused ion beam (FIB) milling, and Xe+ plasma FIB (PFIB) milling. Ga+-based FIB preparation was shown to introduce significant amount of Ga contamination throughout the reconstructed sample (≈1.3 at%), while no Xe contamination was detected in the PFIB-prepared sample. Nevertheless, a significantly higher cluster density was observed in the Xe+ PFIB-prepared sample (≈25.0 × 1023 m−3) as compared to the traditionally produced electropolished sample (≈3.2 × 1023 m−3) and the Ga+ FIB sample (≈5.6 × 1023 m−3). Hence, the absence of the ion milling species does not necessarily mean an absence of specimen preparation defects. Specifically, the FIB and PFIB-prepared samples had more Si-rich clusters as compared to electropolished samples, which is indicative of vacancy stabilization via solute clustering.

5.
MethodsX ; 8: 101217, 2021.
Article in English | MEDLINE | ID: mdl-34434740

ABSTRACT

Atomistic simulations play an important role in unravelling the fundamental behavior of nanocrystalline (NC) metals/alloys. To ensure the validity of the simulated results, the initial NC structures must be representative of a real material to the extent possible. Using proper equilibration techniques, it must also be ensured that these NC structures reach a state of metastable equilibrium before probing their response. To this effect, the influence of simulated thermal equilibration of atomistic NC Ni structures on the resulting mechanical behavior is discussed in this work. It is shown that the well-equilibrated NC structures become stiffer in terms of both elastic response and yielding behavior and accumulate less residual strain upon unloading, thus, signifying the importance of proper equilibration. However, it is found that the regular equilibration method of thermal relaxations at 300 K, typically employed in atomistic modeling studies, takes significantly longer to drive the NC structures towards a metastable equilibrium state. Finally, an improved two-step equilibration method is presented that drastically expedites the equilibration process while resulting in the structural and mechanical properties comparable with the regular equilibration method performed for significantly larger simulation times. The major modification in the improved method involves:•Subjecting only the grain boundary and the surrounding atoms to thermal relaxations at relatively higher temperature.

6.
Microsc Microanal ; 25(2): 401-409, 2019 04.
Article in English | MEDLINE | ID: mdl-30829180

ABSTRACT

Isoconcentration surfaces are commonly used to delineate phases in atom probe datasets. These surfaces then provide the spatial and compositional reference for proximity histograms, the number density of particles, and the volume fraction of particles within a multiphase system. This paper discusses the influence of the isoconcentration surface selection value on these quantitative outputs, using a simple oxide dispersive strengthened alloy, Fe91Ni8Zr1, as the case system. Zirconium reacted with intrinsic oxygen impurities in a consolidated ball-milled powder to precipitate nanoscale zirconia particles. The zirconia particles were identified by varying the Zr-isoconcentration values as well as by the maximum separation data mining method. The associated outputs mentioned above are elaborated upon in reference to the variation in this Zr isosurface value. Considering the dataset as a whole, a 10.5 at.% Zr isosurface provided a compositional inflection point for Zr between the particles and matrix on the proximity histogram; however, this value was unable to delineate all of the secondary oxide particles identified using the maximum separation method. Consequently, variations in the number density and volume fraction were observed as the Zr isovalue was changed to capture these particles resulting in a loss of the compositional accuracy. This highlighted the need for particle-by-particle analysis.

7.
Microsc Microanal ; 25(2): 501-510, 2019 04.
Article in English | MEDLINE | ID: mdl-30714543

ABSTRACT

Atom probe tomography (APT) of a nanocrystalline Cu-7 at.% V thin film annealed at 400°C for 1 h revealed chemical partitioning in the form of solute segregation. The vanadium precipitated along high angle grain boundaries and at triple junctions, determined by cross-correlative precession electron diffraction of the APT specimen. Upon field evaporation, the V2+/(V1+ + VH1+) ratio from the decomposed ions was ~3 within the matrix grains and ~16 within the vanadium precipitates. It was found that the VH1+ complex was prevalent in the matrix, with its presence explained in terms of hydrogen's ability to assist in field evaporation. The change in the V2+/(V1+ + VH1+) charge-state ratio (CSR) was studied as a function of base temperature (25-90 K), laser pulse energy (50-200 pJ), and grain orientation. The strongest influence on changing the CSR was with the varied pulse laser, which made the CSR between the precipitates and the matrix equivalent at the higher laser pulse energies. However, at these conditions, the precipitates began to coarsen. The collective results of the CSRs are discussed in terms of field strengths related to the chemical coordination.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 870-879, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-32830767

ABSTRACT

The crystal structure and composition of the zeta phase in the group VB transition metal carbides are not completely understood despite decades of experimental studies. As such, the phase rarely appears on phase diagrams of the group VB transition metal carbides. There is currently renewed interest in this phase, as tantalum carbide composites exhibit high fracture toughness in the presence of this phase. This work extends the initial computational study using density functional theory of the phase stability of the zeta phase in the tantalum carbide system, where the tantalum carbide zeta-phase crystal structure and stability were determined, to the niobium and vanadium carbides. It is shown that the zeta phases in the three systems share the same crystal structure and it is an equilibrium phase at low temperatures. The carbon atom ordering in the three different phases is explored and it is demonstrated that the zeta phase in the tantalum carbides prefers to order carbon atoms differently than in the niobium and vanadium carbide zeta phases. Finally, the properties of this crystal are computed, including elastic constants, electronic densities of states and phonon dispersion curves, to illustrate that this crystal structure is similar to other transition metal carbides.

9.
J Athl Train ; 51(9): 701-708, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27824251

ABSTRACT

CONTEXT: The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. OBJECTIVE: To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. DESIGN: Cross-sectional study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: Helmets with different finishes and different football jersey fabrics. MAIN OUTCOME MEASURE(S): The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. RESULTS: The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). CONCLUSIONS: The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety.


Subject(s)
Football/injuries , Friction , Head Protective Devices , Protective Clothing , Spinal Injuries/prevention & control , Analysis of Variance , Cross-Sectional Studies , Humans , Materials Testing , Mechanical Phenomena
10.
Sci Rep ; 6: 34571, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708354

ABSTRACT

HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 Tm) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.

11.
Sci Rep ; 6: 34642, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708360

ABSTRACT

A cross-correlative precession electron diffraction - atom probe tomography investigation of Cr segregation in a Fe(Cr) nanocrystalline alloy was undertaken. Solute segregation was found to be dependent on grain boundary type. The results of which were compared to a hybrid Molecular Dynamics and Monte Carlo simulation that predicted the segregation for special character, low angle, and high angle grain boundaries, as well as the angle of inclination of the grain boundary. It was found that the highest segregation concentration was for the high angle grain boundaries and is explained in terms of clustering driven by the onset of phase separation. For special character boundaries, the highest Gibbsain interfacial excess was predicted at the incoherent ∑3 followed by ∑9 and ∑11 boundaries with negligible segregation to the twin and ∑5 boundaries. In addition, the low angle grain boundaries predicted negligible segregation. All of these trends matched well with the experiment. This solute-boundary segregation dependency for the special character grain boundaries is explained in terms of excess volume and the energetic distribution of the solute in the boundary.

12.
Phys Rev Lett ; 114(16): 165502, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25955056

ABSTRACT

Differences in plasticity are usually attributed to significant changes in crystalline symmetry or the strength of the interatomic bonds. In the B1 monocarbides, differences in slip planes exist at low temperatures despite having the same structure and very similar bonding characteristics. Our experimental results demonstrate concretely that HfC slips on {110} planes while TaC slips on {111} planes. Density functional theory calculations rationalize this difference through the formation of an intrinsic stacking fault on the {111} planes, formation of Shockley partials, and enhanced metallic bonding because of the valence filling of electrons between these transitional metal carbides.

14.
Ultramicroscopy ; 111(8): 1062-72, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21740869

ABSTRACT

Over a narrow range of composition, electrodeposited Al-Mn alloys transition from a nanocrystalline structure to an amorphous one, passing through an intermediate dual-phase nanocrystal/amorphous structure. Although the structural change is significant, the chemical difference between the phases is subtle. In this study, the solute distribution in these alloys is revealed by developing a method to enhance phase contrast in atom probe tomography (APT). Standard APT data analysis techniques show that Mn distributes uniformly in single phase (nanocrystalline or amorphous) specimens, and despite some slight deviations from randomness, standard methods reveal no convincing evidence of Mn segregation in dual-phase samples either. However, implanted Ga ions deposited during sample preparation by focused ion-beam milling are found to act as chemical markers that preferentially occupy the amorphous phase. This additional information permits more robust identification of the phases and measurement of their compositions. As a result, a weak partitioning tendency of Mn into the amorphous phase (about 2 at%) is discerned in these alloys.

15.
Microsc Microanal ; 17(3): 398-402, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21492499

ABSTRACT

A series of multislice simulations to quantify the effect of various degrees of order, composition, and thickness on the electron diffracted intensities were performed using the L10 FePt system as the case study. The dynamical diffraction studies were done in both a convergent electron beam diffraction and selected area electron diffraction condition. The L10 symmetry demonstrated some peculiar challenges in the simulation, in particular between the {111} plane normal and the <111> direction, which are not equivalent because of tetragonality. A hybrid weighting function atom of Fe-Pt was constructed to account for S < 1 or nonequiatomic compositions. This statistical approach reduced the complexity of constructing a crystal with the probability that a particular atom was at a particular lattice site for a given order parameter and composition. Considerations of accelerating voltage, convergent angle, and thermal effects are discussed. The simulations revealed significant differences in intensity ratios between films of various compositions but equivalent unit cell numbers and degree of order.

16.
Microsc Microanal ; 17(3): 403-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21492500

ABSTRACT

Eight FePt thin film specimens of various thicknesses, compositions, and order parameters have been analyzed to determine the robustness and fidelity of multislice simulations in determining the chemical order parameter via electron diffraction (ED). The shape of the simulated curves depends significantly on the orientation and thickness of the specimen. The ED results are compared to kinematical scattering order parameters, from the same films, acquired from synchrotron X-ray diffraction (XRD). For the specimens analyzed with convergent beam electron diffraction conditions, the order parameter closely matched the order parameter as determined by the XRD methodology. However, the specimens analyzed by selected area electron diffraction conditions did not show good agreement. This has been attributed to substrate effects that hindered the ability to accurately quantify the intensity values of the superlattice and fundamental reflections.

17.
Ultramicroscopy ; 109(10): 1276-81, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19553019

ABSTRACT

An aberration corrector on the probe-forming lens of a scanning TEM (STEM) equipped with an electron energy-loss spectrometer (EELS) and X-ray energy-dispersive spectrometer (XEDS) has been employed to investigate the compositional variations as a function of length scale in nanoscale Ti/Nb metallic multilayers. The composition profiles of EELS and XEDS were compared with the profiles obtained from the complementary technique of 3D atom probe tomography. At large layer widths (h > or = 7 nm, where h is the layer width) of Ti and Nb, XEDS composition profiles of Ti/Nb metallic multilayers are in good agreement with the EELS results. However, at reduced layer widths (h approximately 2 nm), profiles of EELS and atom probe exhibited similar compositional variations, whereas XEDS results have shown a marked difference. This difference in the composition profiling of the layers has been addressed with reference to the effects of beam broadening and the origin of the signals collected in these techniques. The advantage of using EELS over XEDS for these nanoscaled multilayered materials is demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...