Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 30(8): 1595-1606, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593226

ABSTRACT

PURPOSE: CD137 is a T- and NK-cell costimulatory receptor involved in consolidating immunologic responses. The potent CD137 agonist urelumab has shown clinical promise as a cancer immunotherapeutic but development has been hampered by on-target off-tumor toxicities. A CD137 agonist targeted to the prostate-specific membrane antigen (PSMA), frequently and highly expressed on castration-resistant metastatic prostate cancer (mCRPC) tumor cells, could bring effective immunotherapy to this immunologically challenging to address disease. EXPERIMENTAL DESIGN: We designed and manufactured CB307, a novel half-life extended bispecific costimulatory Humabody VH therapeutic to elicit CD137 agonism exclusively in a PSMA-high tumor microenvironment (TME). The functional activity of CB307 was assessed in cell-based assays and in syngeneic mouse antitumor pharmacology studies. Nonclinical toxicology and toxicokinetic properties of CB307 were assessed in a good laboratory practice (GLP) compliant study in cynomolgus macaques. RESULTS: CB307 provides effective CD137 agonism in a PSMA-dependent manner, with antitumor activity both in vitro and in vivo, and additional activity when combined with checkpoint inhibitors. A validated novel PSMA/CD137 IHC assay demonstrated a higher prevalence of CD137-positive cells in the PSMA-expressing human mCRPC TME with respect to primary lesions. CB307 did not show substantial toxicity in nonhuman primates and exhibited a plasma half-life supporting weekly clinical administration. CONCLUSIONS: CB307 is a first-in-class immunotherapeutic that triggers potent PSMA-dependent T-cell activation, thereby alleviating toxicologic concerns against unrestricted CD137 agonism.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Mice , Animals , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Immunotherapy/methods , Tumor Microenvironment
2.
FEBS Lett ; 579(3): 609-14, 2005 Jan 31.
Article in English | MEDLINE | ID: mdl-15670816

ABSTRACT

Axotrophin (axot) is a newly characterised stem cell gene and mice that lack axotrophin are viable and fertile, but show premature neural degeneration and defective development of the corpus callosum. By comparing axot+/+, axot+/- and axot-/- littermates, we now show that axotrophin is also involved in immune regulation. Both T cell proliferation and T cell-derived leukaemia inhibitory factor (LIF) were suppressed by axotrophin in a gene-dose-dependent manner. Moreover, a role for axotrophin in the feedback regulation of LIF is implicated. This is the first evidence that fate determination mediated by LIF maybe qualified by axotrophin.


Subject(s)
Immune Tolerance/physiology , Interleukin-6/physiology , Animals , Cell Division/physiology , Cell Separation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Leukemia Inhibitory Factor , Mice , Mice, Inbred BALB C , Mice, Transgenic , Spleen/cytology , Thymus Gland/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...