Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(2): 564-571, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38054391

ABSTRACT

Density Functional Theory (DFT) calculations were employed to systematically study the accuracy of various exchange-correlation functionals in reproducing experimental 31P NMR chemical shifts, δExp(31P) for Keggin, [PW12O40]3- and corresponding lacunary clusters: [PW11O39]7-, [A-PW9O34]9-, and [B-PW9O34]9-. Initially, computed chemical shifts, δCalc(31P) were obtained with without neutralising their charge in which associated error, δError(31P), decreased as a function of Hartree-Fock (HF) exchange, attributed to constriction of the P-O tetrahedron. By comparison, δCalc(31P) performed with explicitly located counterions to render the system charge neutral, reduced discrepancies, δError(31P) by 1-2 ppm. However, uncertainties in δCalc(31P) remain, particularly for [B-PW9O34]9- anions attributed to direct electrostatic interactions between the counterions and the central tetrahedron. Optimal results were achieved using the PBE/TZP//PBE0/TZP method, achieving a mean absolute error (MAE) and a mean squared error (MSE) of 4.03 ppm. Our results emphasize that understanding the nature of the electrolyte and solvent environment is essential to obtaining reasonable agreement between theoretical and experimental results.

2.
Inorg Chem ; 62(31): 12260-12271, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37489885

ABSTRACT

Polyoxometalates have attracted significant interest owing to their structural diversity, redox stability, and functionality at the nanoscale. In this work, density functional theory calculations have been employed to systematically study the accuracy of various exchange-correlation functionals in reproducing experimental redox potentials, U0Red in [PW11M(H2O)O39]q- M = Mn(III/II), Fe(III/II), Co(III/II), and Ru(III/II). U0Red calculations for [PW11M(H2O)O39]q- were calculated using a conductor-like screening model to neutralize the charge in the cluster. We explicitly located K+ counterions which induced positive shifting of potentials by > 500 mV. This approximation improved the reproduction of redox potentials for Kx[XW11M(H2O)O39]q-x M = Mn(III/II)/Co(III/II). However, uncertainties in U0Red for Kx[PW11M(H2O)O39]q-x M = Fe(III/II)/Ru(III/II) were observed because of the over-stabilization of the ion-pairs. Hybrid functionals exceeding 25% Hartree-Fock exchange are not recommended because of large uncertainties in ΔU0Red attributed to exaggerated proximity of the ion-pairs. Our results emphasize that understanding the nature of the electrode and electrolyte environment is essential to obtain a reasonable agreement between theoretical and experimental results.

3.
Front Chem ; 9: 742565, 2021.
Article in English | MEDLINE | ID: mdl-34595154

ABSTRACT

Fast and reliable industrial production of ammonia (NH3) is fundamentally sustaining modern society. Since the early 20th Century, NH3 has been synthesized via the Haber-Bosch process, running at conditions of around 350-500°C and 100-200 times atmospheric pressure (15-20 MPa). Industrial ammonia production is currently the most energy-demanding chemical process worldwide and contributes up to 3% to the global carbon dioxide emissions. Therefore, the development of more energy-efficient pathways for ammonia production is an attractive proposition. Over the past 20 years, scientists have imagined the possibility of developing a milder synthesis of ammonia by mimicking the nitrogenase enzyme, which fixes nitrogen from the air at ambient temperatures and pressures to feed leguminous plants. To do this, we propose the use of highly reconfigurable molecular metal oxides or polyoxometalates (POMs). Our proposal is an informed design of the polyoxometalate after exploring the catabolic pathways that cyanobacteria use to fix N2 in nature, which are a different route than the one followed by the Haber-Bosch process. Meanwhile, the industrial process is a "brute force" system towards breaking the triple bond N-N, needing high pressure and high temperature to increase the rate of reaction, nature first links the protons to the N2 to later easier breaking of the triple bond at environmental temperature and pressure. Computational chemistry data on the stability of different polyoxometalates will guide us to decide the best design for a catalyst. Testing different functionalized molecular metal oxides as ammonia catalysts laboratory conditions will allow for a sustainable reactor design of small-scale production.

SELECTION OF CITATIONS
SEARCH DETAIL
...