Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Sci Rep ; 13(1): 9038, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270636

ABSTRACT

Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , SARS-CoV-2/genetics , COVID-19 Vaccines , Oligonucleotides/genetics , COVID-19/prevention & control , mRNA Vaccines , Peptide Mapping/methods , RNA, Messenger/genetics
3.
Regul Toxicol Pharmacol ; 112: 104587, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32006671

ABSTRACT

Adalimumab, a recombinant fully human monoclonal antibody targeting tumor necrosis factor (TNF), is approved in the United States and Europe to treat various inflammatory and autoimmune indications. Biosimilars are approved biologics highly similar, but not identical, to approved biotherapeutics. To support clinical development of PF-06410293, an adalimumab biosimilar, nonclinical studies evaluated the structural, functional, toxicologic, and toxicokinetic similarity to originator adalimumab sourced from the United States (adalimumab-US) and European Union (adalimumab-EU). Structural similarity was assessed by peptide mapping. Biologic activity was measured via inhibition of TNF-induced apoptosis and Fc-based functionality assessments. In vivo nonclinical similarity was evaluated in a toxicity study in cynomolgus monkeys administered subcutaneous PF-06410293 or adalimumab-EU (0 or 157 mg/kg/week). Peptide mapping demonstrated PF-06410293, adalimumab-US, and adalimumab-EU had identical amino acid sequences. Comparative functional and binding assessments were similar. Effects of PF-06410293 and adalimumab-EU were similar and limited to pharmacologically mediated decreased cellularity of lymphoid follicles and germinal centers in spleen. Toxicokinetics were similar; maximum plasma concentration and area-under-the-concentration-time curve ratio of PF-06410293:adalimumab-EU ranged from 1.0 to 1.2. These studies supported PF-06410293 entry into clinical development. Many regulatory agencies now only request nonclinical in vivo testing if there is residual uncertainty regarding biosimilarity after in vitro analytical studies.


Subject(s)
Adalimumab/pharmacokinetics , Biosimilar Pharmaceuticals/pharmacokinetics , Adalimumab/blood , Adalimumab/chemistry , Animals , Biosimilar Pharmaceuticals/blood , Biosimilar Pharmaceuticals/chemistry , European Union , Female , Humans , Macaca fascicularis , Male , Tissue Distribution , U937 Cells , United States
4.
Nat Methods ; 14(6): 600-606, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28459459

ABSTRACT

RNA-guided CRISPR-Cas9 endonucleases are widely used for genome engineering, but our understanding of Cas9 specificity remains incomplete. Here, we developed a biochemical method (SITE-Seq), using Cas9 programmed with single-guide RNAs (sgRNAs), to identify the sequence of cut sites within genomic DNA. Cells edited with the same Cas9-sgRNA complexes are then assayed for mutations at each cut site using amplicon sequencing. We used SITE-Seq to examine Cas9 specificity with sgRNAs targeting the human genome. The number of sites identified depended on sgRNA sequence and nuclease concentration. Sites identified at lower concentrations showed a higher propensity for off-target mutations in cells. The list of off-target sites showing activity in cells was influenced by sgRNP delivery, cell type and duration of exposure to the nuclease. Collectively, our results underscore the utility of combining comprehensive biochemical identification of off-target sites with independent cell-based measurements of activity at those sites when assessing nuclease activity and specificity.


Subject(s)
CRISPR-Cas Systems/genetics , Chromosome Mapping/methods , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
5.
Mol Cell ; 63(4): 633-646, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27499295

ABSTRACT

The repair outcomes at site-specific DNA double-strand breaks (DSBs) generated by the RNA-guided DNA endonuclease Cas9 determine how gene function is altered. Despite the widespread adoption of CRISPR-Cas9 technology to induce DSBs for genome engineering, the resulting repair products have not been examined in depth. Here, the DNA repair profiles of 223 sites in the human genome demonstrate that the pattern of DNA repair following Cas9 cutting at each site is nonrandom and consistent across experimental replicates, cell lines, and reagent delivery methods. Furthermore, the repair outcomes are determined by the protospacer sequence rather than genomic context, indicating that DNA repair profiling in cell lines can be used to anticipate repair outcomes in primary cells. Chemical inhibition of DNA-PK enabled dissection of the DNA repair profiles into contributions from c-NHEJ and MMEJ. Finally, this work elucidates a strategy for using "error-prone" DNA-repair machinery to generate precise edits.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Cas Systems , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Endonucleases/metabolism , Gene Editing , Gene Expression Profiling/methods , Bacterial Proteins/genetics , CRISPR-Associated Protein 9 , Endonucleases/genetics , HCT116 Cells , HEK293 Cells , Humans , K562 Cells , RNA Interference , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Time Factors , Transfection
6.
J Am Soc Mass Spectrom ; 18(8): 1439-52, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17543535

ABSTRACT

Several groups have investigated the photodissociation of peptide ions with ultraviolet light. Significant differences have been reported with 157 and 193 nm excitation. Recent studies have shown that the mass analyzer can also influence the observed photofragment distribution. Comparison of experiments using different peptides, wavelengths, and mass analyzers is undesirably complicated. In the present work, several peptides are analyzed with both 157 and 193 nm photodissociation in tandem-TOF and linear ion trap mass spectrometers. The results indicate that the fragment ion distribution can be influenced by both the photodissociation wavelength and the mass analyzer. The two wavelengths generate similar spectra in an ion trap but quite different results in a tandem-TOF instrument.


Subject(s)
Peptides/chemistry , Spectrophotometry, Ultraviolet/methods , Amino Acid Sequence , Electrochemistry/methods , Peptide Mapping , Peptides/chemical synthesis , Photochemistry/methods , Vacuum
7.
J Am Soc Mass Spectrom ; 17(9): 1315-21, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16857381

ABSTRACT

One hundred fifty-seven nm photodissociation of singly-charged peptide ions induces the cleavage of alpha-carbon to carbonyl-carbon bonds along the backbone. a(n) + 1 radical ions are observed as the primary photolysis products of peptides with N-terminal arginines in a linear ion trap mass spectrometer. The radical elimination pathways undertaken by the a(n) + 1 radical ions to form more stable even-electron species are studied in hydrogen-deuterium (H/D) exchange experiments. Two types of a(n) ions along with d-type ions are observed as secondary elimination products. The relative abundance of each depends on the C-terminal residue of the radical fragment ion.


Subject(s)
Peptide Mapping/methods , Peptides/chemistry , Peptides/radiation effects , Photochemistry/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence/radiation effects , Free Radicals , Ions , Light , Molecular Sequence Data , Static Electricity
8.
Rapid Commun Mass Spectrom ; 19(16): 2313-20, 2005.
Article in English | MEDLINE | ID: mdl-16034827

ABSTRACT

The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.


Subject(s)
Oligosaccharides/chemistry , Oligosaccharides/radiation effects , Ultraviolet Rays , Carbohydrate Sequence , Guanidine/chemistry , Ions/chemistry , Ions/radiation effects , Molecular Sequence Data , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
9.
J Am Soc Mass Spectrom ; 16(8): 1384-98, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15979330

ABSTRACT

One Hundred Fifty-Seven nm photodissociation of singly protonated peptides generates unusual distributions of fragment ions. When the charge is localized at the C-terminus of the peptide, spectra are dominated by x-, v-, and w-type fragments. When it is sequestered at the N-terminus, a- and d-type ions are overwhelmingly abundant. Evidence is presented suggesting that the fragmentation occurs via photolytic radical cleavage of the peptide backbone at the bond between the alpha- and carbonyl-carbons followed by radical elimination to form the observed daughter ions.


Subject(s)
Peptides/analysis , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Ultraviolet Rays , Arginine/chemistry , Lysine/chemistry , Peptides/chemistry , Proteomics/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Vacuum
10.
Rapid Commun Mass Spectrom ; 19(12): 1657-65, 2005.
Article in English | MEDLINE | ID: mdl-15915476

ABSTRACT

The photodissociation by 157 nm light of singly- and doubly-charged peptide ions containing C- or N-terminal arginine residues was studied in a linear ion trap mass spectrometer. Singly-charged peptides yielded primarily x- and a-type ions, depending on the location of the arginine residue, along with some related side-chain fragments. These results are consistent with our previous work using a tandem time-of-flight (TOF) instrument with a vacuum matrix-assisted laser desorption/ionization (MALDI) source. Thus, the different internal energies of precursor ions in the two experiments seem to have little effect on their photofragmentation. For doubly-charged peptides, the dominant fragments observed in both photodissociation and collisionally induced dissociation (CID) experiments are b- and y-type ions. Preliminary experiments demonstrating fragmentation of multiply-charged ubiquitin ions by 157 nm photodissociation are also presented.


Subject(s)
Peptide Mapping/methods , Peptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Arginine/chemistry , Cattle , Horses , Photochemistry , Ubiquitin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...