Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
Mol Biol Evol ; 39(4)2022 04 10.
Article in English | MEDLINE | ID: mdl-35388432

ABSTRACT

The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Biological Evolution , Female , Genomics , Lizards/genetics , Mammals/physiology , Placenta , Pregnancy , Viviparity, Nonmammalian/genetics
2.
J Comp Physiol B ; 192(2): 263-273, 2022 03.
Article in English | MEDLINE | ID: mdl-35118516

ABSTRACT

Shark placentae are derived from modifications to the fetal yolk sac and the maternal uterine mucosa. In almost all placental sharks, embryonic development occurs in an egg capsule that remains intact for the entire pregnancy, separating the fetal tissues from the maternal tissues at the placental interface. Here, we investigate the structure and permeability of the egg capsules that surround developing embryos of the placental Australian sharpnose shark (Rhizoprionodon taylori) during late pregnancy. The egg capsule is an acellular fibrous structure that is 0.42 ± 0.04 µm thick at the placental interface between the yolk sac and uterine tissues, and 0.67 ± 0.08 µm thick in the paraplacental regions. This is the thinnest egg capsule of any placental shark measured so far, which may increase the diffusion rate of respiratory gases, fetal wastes, water and nutrients between maternal and fetal tissues. Molecules smaller than or equal to ~ 1000 Da can diffuse through the egg capsule, but larger proteins (~ 3000-26,000 Da) cannot. Similar permeability characteristics between the egg capsule of R. taylori and other placental sharks suggest that molecular size is an important determinant of the molecules that can be exchanged between the mother and her embryos during pregnancy.


Subject(s)
Sharks , Animals , Australia , Female , Permeability , Placenta , Pregnancy , Sharks/physiology , Yolk Sac
3.
Biol Rev Camb Philos Soc ; 97(3): 1179-1192, 2022 06.
Article in English | MEDLINE | ID: mdl-35098647

ABSTRACT

How innovations such as vision, flight and pregnancy evolve is a central question in evolutionary biology. Examination of transitional (intermediate) forms of these traits can help address this question, but these intermediate phenotypes are very rare in extant species. Here we explore the biology and evolution of transitional forms of pregnancy that are midway between the ancestral state of oviparity (egg-laying) and the derived state, viviparity (live birth). Transitional forms of pregnancy occur in only three vertebrates, all of which are lizard species that also display intraspecific variation in reproductive phenotype. In these lizards (Lerista bougainvillii, Saiphos equalis, and Zootoca vivipara), geographic variation of three reproductive forms occurs within a single species: oviparity, viviparity, and a transitional form of pregnancy. This phenomenon offers the valuable prospect of watching 'evolution in action'. In these species, it is possible to conduct comparative research using different reproductive forms that are not confounded by speciation, and are of relatively recent origin. We identify major proximate and ultimate questions that can be addressed in these species, and the genetic and genomic tools that can help us understand how transitional forms of pregnancy are produced, despite predicted fitness costs. We argue that these taxa represent an excellent prospect for understanding the major evolutionary shift between egg-laying and live birth, which is a fundamental innovation in the history of animals.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Biological Evolution , Lizards/genetics , Oviparity/genetics , Reproduction/genetics , Snakes , Viviparity, Nonmammalian/genetics
4.
Biol Reprod ; 105(6): 1381-1400, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34514493

ABSTRACT

There are many different forms of nutrient provision in viviparous (live-bearing) species. The formation of a placenta is one method where the placenta functions to transfer nutrients from mother to fetus (placentotrophy), to transfer waste from the fetus to the mother, and to perform respiratory gas exchange. Despite having the same overarching function, there are different types of placentation within placentotrophic vertebrates, and many morphological changes occur in the uterus during pregnancy to facilitate formation of the placenta. These changes are regulated in complex ways but are controlled by similar hormonal mechanisms across species. This review describes current knowledge of the morphological and molecular changes to the uterine epithelium preceding implantation among mammals. Our aim is to identify the commonalities and constraints of these cellular changes to understand the evolution of placentation in mammals and to propose directions for future research. We compare and discuss the complex modifications to the ultrastructure of uterine epithelial cells (UEC) and show that there are similarities in the changes to the cytoskeleton and gross morphology of the UEC, especially of the apical and lateral plasma membrane of the cells during the formation of a placenta in all eutherians and marsupials studied to date. We conclude that further research is needed to understand the evolution of placentation among viviparous mammals, particularly concerning the level of placental invasiveness, hormonal control, and genetic underpinnings of pregnancy in marsupial taxa.


Subject(s)
Biological Evolution , Mammals/physiology , Placentation , Animals , Female , Pregnancy
5.
Placenta ; 108: 11-22, 2021 05.
Article in English | MEDLINE | ID: mdl-33780667

ABSTRACT

INTRODUCTION: Viviparity (live-birth) has evolved from oviparity (egg-laying) multiple times in sharks. While most transitions from oviparity to viviparity have resulted in non-placental forms of viviparity, some sharks develop a yolk sac placenta during pregnancy. The Australian sharpnose shark (Rhizoprionodon taylori) is a placental species that suspends embryonic development in a diapause for most of pregnancy. METHODS: To identify structures involved in supporting rapid embryonic growth in late pregnancy, we examined uterine and placental morphology by light and electron microscopy. RESULTS: Paraplacental uterine regions have morphological specialisations consistent with secretion and fluid transport between uterine tissues and the lumen. Uterine secretions in the lumen may be absorbed by the outgrowths on the embryonic umbilical cord ('appendiculae'), which are densely covered by microvilli. The placenta consists of uterine villi that interdigitate with the yolk sac and enhance the surface area available for fetomaternal exchange. The yolk sac does not invade the uterine epithelium, and the egg capsule remains intact at the placental interface, separating maternal and fetal tissues. Some placental uterine epithelial cells are secretory, and endocytic vesicles in the opposing yolk sac ectodermal cells suggest that nutrient transport is by histotrophic uterine secretion followed by fetal absorption. Respiratory gases, water and possibly small nutrients likely diffuse across the placenta, where maternal and fetal blood vessels are ~2 µm apart. DISCUSSION: Placental structure in R. taylori is similar to most other sharks, but there are differences in cellular structures between species that may indicate species-specific placental transport mechanisms.


Subject(s)
Sharks/anatomy & histology , Uterus/ultrastructure , Viviparity, Nonmammalian , Yolk Sac/ultrastructure , Animals , Female
6.
Sci Rep ; 10(1): 14383, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943647

ABSTRACT

Humans are increasing the frequency of fish kills by degrading freshwater ecosystems. Simultaneously, scavengers like freshwater turtles are declining globally, including in the Australian Murray-Darling Basin. Reduced scavenging may cause water quality problems impacting both ecosystems and humans. We used field and mesocosm experiments to test whether scavenging by turtles regulates water quality during simulated fish kills. In the field, we found that turtles were important scavengers of fish carrion. In mesocosms, turtles rapidly consumed carrion, and water quality in mesocosms with turtles returned to pre-fish kill levels faster than in turtle-free controls. Our experiments have important ecological implications, as they suggest that turtles are critical scavengers that regulate water quality in freshwater ecosystems. Recovery of turtle populations may be necessary to avoid the worsening of ecosystem health, particularly after fish kills, which would have devastating consequences for many freshwater species.


Subject(s)
Ecosystem , Feeding Behavior , Fresh Water , Turtles/physiology , Water Quality , Animal Distribution , Animals , Body Remains , Carps , Male , New South Wales , Rivers , Wetlands
7.
Sci Rep ; 10(1): 12453, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32699380

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Mol Ecol ; 29(7): 1315-1327, 2020 04.
Article in English | MEDLINE | ID: mdl-32153075

ABSTRACT

Our understanding of the evolution of complex biological traits is greatly advanced by examining taxa with intermediate phenotypes. The transition from oviparity (egg-laying) to viviparity (live-bearing) has occurred independently in many animal lineages, but there are few phenotypic intermediates. The lizard Saiphos equalis exhibits bimodal reproduction, with some viviparous populations, and other oviparous populations with long egg-retention, a rare trait where most of embryonic development occurs inside the mother prior to late ovipositioning. We posit that oviparous S. equalis represent an intermediate form between "true" oviparity and viviparity. We used transcriptomics to compare uterine gene expression in these two phenotypes, and provide a molecular model for the genetic control and evolution of reproductive mode. Many genes are differentially expressed throughout the reproductive cycle of both phenotypes, which have clearly different gene expression profiles overall. The differentially expressed genes within oviparous and viviparous individuals have broadly similar biological functions putatively important for sustaining embryos, including uterine remodelling, respiratory gas and water exchange, and immune regulation. These functional similarities indicate either that long egg-retention is an exaptation for viviparity, or might reflect parallel evolution of similar gravidity-related changes in gene expression in long egg-retention oviparity. In contrast, gene expression changes across the reproductive cycle of long egg-retaining oviparous S. equalis are dramatically different from those of "true" oviparous skinks (such as Lampropholis guichenoti), supporting our assertion that oviparous S. equalis exhibit an intermediate phenotype between "true" oviparity and viviparity.


Subject(s)
Lizards/genetics , Lizards/physiology , Oviparity/genetics , Viviparity, Nonmammalian/genetics , Animals , Biological Evolution , Female , Gene Expression Regulation, Developmental , Models, Genetic , New South Wales , Transcriptome
9.
J Anat ; 236(6): 1126-1136, 2020 06.
Article in English | MEDLINE | ID: mdl-32052440

ABSTRACT

Mammalian pregnancy involves remodelling of the uterine epithelium to enable placentation. In marsupials, such remodelling has probably played a key role in the transition from ancestral invasive placentation to non-invasive placentation. Identifying uterine alterations that are unique to marsupials with non-invasive placentation can thus elucidate mechanisms of marsupial placental evolution. We identified apical alterations to uterine epithelial cells prior to implantation in Monodelphis domestica, a member of the least derived living marsupial clade (Didelphidae) with invasive (endotheliochorial) placentation. We then compared these traits with those of Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae), both with non-invasive placentation, to identify which alterations to the uterine epithelium are ancestral and which facilitate secondarily evolved non-invasive placentation. In M. domestica, remodelling of the uterine epithelium involves reduced cellular heterogeneity and development of uterodome-like cells, suggesting that similar alterations may also have occurred in the marsupial common ancestor. These alterations also overlap with those of both T. vulpecula and Ma. eugenii, suggesting that the placental shift from invasive to non-invasive placentation in marsupials involves essential, conserved characteristics, irrespective of placental mode. However, unique apical alterations of both T. vulpecula and Ma. eugenii, relative to M. domestica, imply that lineage-specific alterations underpin the evolutionary shift to non-invasive placentation in marsupials.


Subject(s)
Epithelium/physiology , Placentation/physiology , Pregnancy, Animal/physiology , Uterus/physiology , Animals , Biological Evolution , Embryo Implantation/physiology , Female , Monodelphis , Pregnancy
10.
J Morphol ; 281(4-5): 428-437, 2020 04.
Article in English | MEDLINE | ID: mdl-32031746

ABSTRACT

Embryos of the viviparous dwarf ornate wobbegong shark (Orectolobus ornatus) develop without a placenta, unattached to the uterine wall of their mother. Here, we present the first light microscopy study of the uterus of O. ornatus throughout pregnancy. At the beginning of pregnancy, the uterine luminal epithelium and underlying connective tissue become folded to form uterine ridges. By mid to late pregnancy, the luminal surface is extensively folded and long luminal uterine villi are abundant. Compared to the nonpregnant uterus, uterine vasculature is increased during pregnancy. Additionally, as pregnancy progresses the uterine epithelium is attenuated so that there is minimal uterine tissue separating large maternal blood vessels from the fluid that surrounds developing embryos. We conclude that the uterus of O. ornatus undergoes an extensive morphological transformation during pregnancy. These uterine modifications likely support developing embryos via embryonic respiratory gas exchange, waste removal, water balance, and mineral transfer.


Subject(s)
Sharks/anatomy & histology , Uterus/anatomy & histology , Animals , Epithelium/anatomy & histology , Female , Placenta/anatomy & histology , Pregnancy , Uterus/cytology
11.
J Comp Physiol B ; 190(1): 49-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31858229

ABSTRACT

Nonapeptides and their receptors regulate a diverse range of physiological processes. We assessed the contractile responsiveness of uteri from the squamate viviparous-oviparous species pair, Pseudemoia entrecasteauxii and Lampropholis guichenoti, as well as the bimodally reproductive species, Saiphos equalis, to arginine vasopressin (AVP). We assessed the resulting uterine contractility as a function of pregnancy status, species and parity mode. We also measured mRNA abundance for the nonapeptide receptor, oxytocin receptor (oxtr), in uteri from P. entrecasteauxii and L. guichenoti and compared expression across pregnancy status and parity mode. We found that pregnant uteri exhibited a significantly greater contractile response to AVP than non-pregnant uteri in all three lizard species studied. Cross-species comparisons revealed that uteri from viviparous P. entrecasteauxii were significantly more responsive to AVP than uteri from oviparous L. guichenoti during both pregnant and non-pregnant states. Conversely, for non-pregnant S. equalis, uteri from viviparous individuals were significantly less responsive to AVP than uteri from oviparous individuals, while during pregnancy, there was no difference in AVP contractile responsiveness. There was no difference in expression of oxtr between L. guichenoti and P. entrecasteauxii, or between pregnant and non-pregnant individuals within each species. We found no significant correlation between oxtr expression and AVP contractile responsiveness. These findings indicate that there are differences in nonapeptide signalling across parity mode and suggest that in these lizards, labour may be triggered either by an increase in plasma nonapeptide concentration, or by an increase in expression of a different nonapeptide receptor from the vasopressin-like receptor family.


Subject(s)
Arginine Vasopressin/pharmacology , Lizards/physiology , Oviparity/physiology , Uterine Contraction/drug effects , Viviparity, Nonmammalian/physiology , Amino Acid Sequence , Animals , Female , Lizards/embryology , Lizards/genetics , Lizards/metabolism , Oviparity/drug effects , Oxytocin/metabolism , Pregnancy , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Reproduction/drug effects , Sequence Homology , Viviparity, Nonmammalian/drug effects
12.
Mol Reprod Dev ; 86(6): 639-649, 2019 06.
Article in English | MEDLINE | ID: mdl-30950142

ABSTRACT

The fluid that surrounds the embryo in the uterus contains important nourishing factors and secretions. To maintain the distinct microenvironment in the uterine lumen, the tight junctions between uterine epithelial cells are remodeled to decrease paracellular movement of molecules and solutes. Modifications to tight junctions between uterine epithelial cells is a common feature of pregnancy in eutherian mammals, regardless of placental type. Here we used immunofluorescence microscopy and western blot analysis to describe distributional changes to tight junctional proteins, claudin-1, -3, -4, and -5, in the uterine epithelial cells of a marsupial species, Sminthopsis crassicaudata. Immunofluorescence microscopy revealed claudin-1, -3, and -5 in the tight junctions of the uterine epithelium of S. crassicaudata during pregnancy. These specific claudins are associated with restricting passive movement of fluid between epithelial cells in eutherians. Hence, their function during pregnancy in S. crassicaudata may be to maintain the uterine luminal content surrounding developing embryos. Claudin-4 disappears from all uterine regions of S. crassicaudata at the time of implantation, in contrast with the distribution of this claudin in some eutherian mammals. We conclude that like eutherian mammals, distributional changes to claudins in the uterine epithelial cells of S. crassicaudata are necessary to support pregnancy. However, the combination of individual claudin isoforms in the tight junctions of the uterine epithelium of S. crassicaudata differs from that of eutherian mammals. Our findings suggest that the precise permeability of the paracellular pathway of the uterine epithelium is species-specific.


Subject(s)
Claudins/metabolism , Epithelial Cells/metabolism , Marsupialia/metabolism , Pregnancy/metabolism , Tight Junctions/metabolism , Uterus/metabolism , Animals , Female
13.
Biol Lett ; 15(4): 20180827, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30940025

ABSTRACT

Facultative changes in parity mode (oviparity to viviparity and vice versa) are rare in vertebrates, yet offer fascinating opportunities to investigate the role of reproductive lability in parity mode evolution. Here, we report apparent facultative oviparity by a viviparous female of the bimodally reproductive skink Saiphos equalis-the first report of different parity modes within a vertebrate clutch. Eggs oviposited facultatively possess shell characteristics of both viviparous and oviparous S. equalis, demonstrating that egg coverings for viviparous embryos are produced by the same machinery as those for oviparous individuals. Since selection may act in either direction when viviparity has evolved recently, squamate reproductive lability may confer a selective advantage. We suggest that facultative oviparity is a viable reproductive strategy for S. equalis and that squamate reproductive lability is more evolutionarily significant than previously acknowledged.


Subject(s)
Lizards , Oviparity , Animals , Female , Reproduction , Triazines , Viviparity, Nonmammalian
14.
PLoS One ; 14(12): e0218904, 2019.
Article in English | MEDLINE | ID: mdl-31891586

ABSTRACT

Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem.


Subject(s)
Classification/methods , Image Processing, Computer-Assisted/standards , Marine Biology/standards , Animals , Artificial Intelligence , Biodiversity , Data Curation/methods , Data Curation/standards , Databases, Factual , Ecology , Ecosystem , Image Processing, Computer-Assisted/methods , Marine Biology/classification
15.
Reprod Fertil Dev ; 31(4): 633-644, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30449299

ABSTRACT

The uterine epithelium undergoes remodelling to become receptive to blastocyst implantation during pregnancy in a process known as the plasma membrane transformation. There are commonalities in ultrastructural changes to the epithelium, which, in eutherian, pregnancies are controlled by maternal hormones, progesterone and oestrogens. The aim of this study was to determine the effects that sex steroids have on the uterine epithelium in the fat-tailed dunnart Sminthopsis crassicaudata, the first such study in a marsupial. Females were exposed to exogenous hormones while they were reproductively quiescent, thus not producing physiological concentrations of ovarian hormones. We found that changes to the protein E-cadherin, which forms part of the adherens junction, are controlled by progesterone and that changes to the desmoglein-2 protein, which forms part of desmosomes, are controlled by 17ß-oestradiol. Exposure to a combination of progesterone and 17ß-oestradiol causes changes to the microvilli on the apical surface and to the ultrastructure of the uterine epithelium. There is a decrease in lateral adhesion when the uterus is exposed to progesterone and 17ß-oestradiol that mimics the hormone environment of uterine receptivity. We conclude that uterine receptivity and the plasma membrane transformation in marsupial and eutherian pregnancies are under the same endocrine control and may be an ancestral feature of therian mammals.


Subject(s)
Cell Membrane/drug effects , Estradiol/pharmacology , Progesterone/pharmacology , Uterus/drug effects , Adherens Junctions/metabolism , Animals , Cadherins/metabolism , Cell Membrane/metabolism , Epithelium/drug effects , Epithelium/metabolism , Female , Marsupialia , Microvilli/drug effects , Microvilli/metabolism , Uterus/metabolism
16.
Anat Rec (Hoboken) ; 301(11): 1928-1935, 2018 11.
Article in English | MEDLINE | ID: mdl-30288962

ABSTRACT

The uterine surface undergoes significant remodeling, termed the "plasma membrane transformation," during pregnancy to allow for implantation of the blastocyst and formation of the placenta in viviparous amniote vertebrates. Unlike other species within the superorder Euarchontoglires, which have a hemochorial (highly invasive) placenta, kangaroo rats (Dipodomys spp.) exhibit a less invasive endotheliochorial placenta. We characterized the changes that occur to membrane molecules and the cellular ultrastructure of the uterine epithelium during early pregnancy in Merriam's kangaroo rat, Dipodomys merriami using electron microscopy and immunofluorescence microscopy. Epithelial cadherin (E-cadherin) is an adhesion protein that forms the adherens junction and is localized to the lateral plasma membrane of uterine epithelium during the nonreproductive state but localizes nonspecifically in the uterine epithelium immediately preceding implantation. Desmosomes are a type of cadherin that form junctional complexes along the lateral plasma membrane of epithelium. Dsg-2, a marker for desmosomes, is localized along the lateral plasma membrane in non-pregnant animals but redistributes to the apical region of the lateral plasma membrane during early pregnancy. The shift in desmosome and cadherin distribution before implantation suggests that there is a reduction in lateral adhesion between epithelial cells to allow for invasion by the blastocyst. Surprisingly, although Kangaroo rats form a less invasive placenta, these same changes occur during pregnancy in species with highly invasive placentation, such as the laboratory rat and human. These commonalities suggest that it is not through the retention of lateral adhesion that the blastocyst is prevented from further invasion in this rodent species. Anat Rec, 301:1928-1935, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Embryo Implantation/physiology , Uterus/physiology , Uterus/ultrastructure , Animals , Dipodomys , Female , Pregnancy , Uterus/chemistry
17.
Anat Rec (Hoboken) ; 301(9): 1497-1505, 2018 09.
Article in English | MEDLINE | ID: mdl-30312028

ABSTRACT

Mammals exhibit similar changes in uterine epithelial morphology during early pregnancy despite having a diverse range of placental types. The uterine epithelium undergoes rapid morphological and molecular change ("plasma membrane transformation") during the early stages of pregnancy to allow attachment of the blastocyst. The domestic cat, Felis catus is in the order Carnivora; all species within the Carnivora studied so far develop an endotheliochorial placenta during pregnancy. The endotheliochorial placental type is a common form of placental invasion in mammals. The molecular changes that allow remodeling of the uterine epithelium in preparation for implantation are unknown in most mammals but would provide us with an understanding of what molecules underpin successful implantation and pregnancy among Carnivora. We used immunofluorescence microscopy to localize the key adherens junction proteins desmoglein-2 and E-cadherin in the lateral plasma membrane of the uterine epithelium of F. catus during pregnancy. We show that redistribution of desmoglein-2 and E-cadherin likely facilitates reduction of cell-to-cell adhesion allowing for implantation of the blastocyst and formation of the placenta. The ultrastructural and molecular changes to the uterine epithelium during early pregnancy in F. catus are similar to that in species with other levels of placental invasiveness, suggesting that key molecules such as desmoglein-2 and E-cadherin are crucial to successful pregnancy across all mammals. Anat Rec, 301:1497-1505, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Cell Membrane/metabolism , Embryo Implantation/physiology , Epithelial Cells/cytology , Uterus/cytology , Animals , Cadherins/metabolism , Cats , Desmoglein 2/metabolism , Epithelial Cells/metabolism , Female , Pregnancy , Uterus/metabolism
18.
J Exp Zool A Ecol Integr Physiol ; 329(6-7): 362-372, 2018 07.
Article in English | MEDLINE | ID: mdl-30192440

ABSTRACT

Environmentally cued hatching allows embryos to alter the time of hatching in relation to environment through phenotypic plasticity. Spatially variable temperatures within shallow nests of many freshwater turtles cause asynchronous development of embryos within clutches, yet neonates still hatch synchronously either by hatching early or via metabolic compensation. Metabolic compensation and changes in circadian rhythms presumably enable embryos to adjust their developmental rates to catch up to more advanced embryos within the nest. Hatchlings of the North American freshwater turtle Chrysemys picta usually overwinter within the nest and emerge the following spring, but still hatch synchronously via hatching early. Here, we used rates of oxygen consumption and heart rate profiles to investigate the metabolic rates of clutches of C. picta developing in conditions that result in asynchronous development to determine if compensatory changes in metabolism occur during incubation. Embryos hatched synchronously and displayed circadian rhythms throughout incubation, but exhibited no evidence of metabolic compensation. Phenotypic traits of hatchlings, including body size and righting performance, were also not affected by asynchronous development. We conclude that less developed embryos of C. picta hatch synchronously with their clutch-mates by hatching early, which does not appear to inflict a fitness cost to individuals. The ultimate mechanism for synchronous hatching in C. picta could be for hatchlings to ensure an optimal overwintering position within the center of the nest. Consequently, immediate fitness costs will not hinder hatchling survival. The geographic location, as well as environmental and genetic factors unique to populations, can all influence hatching behavior in turtles through phenotypic plasticity. Hence, synchronous hatching is an adaptive bet-hedging strategy in turtles, but the mechanisms to achieve it are diverse.


Subject(s)
Adaptation, Physiological/physiology , Embryo, Nonmammalian/metabolism , Turtles/embryology , Animals , Body Size , Circadian Rhythm , Heart Rate/physiology , Oxygen Consumption/physiology , Turtles/physiology
19.
Physiol Biochem Zool ; 91(4): 950-966, 2018.
Article in English | MEDLINE | ID: mdl-29863954

ABSTRACT

The thermal sensitivity of physiological rates is a key characteristic of organisms. For tuatara (Sphenodon punctatus), the last surviving member of the reptilian order Rhynchocephalia and an unusually cold-tolerant reptile, we aimed to clarify responses in indices of metabolic rate (oxygen consumption [[Formula: see text]] and carbon dioxide production [[Formula: see text]]) as well as rates of total evaporative water loss (TEWL) to temperatures at the warmer end of the known tolerated range; currently, patterns for metabolic rate are unclear above 25°C, and TEWL has not been measured above 25°C. We first established that metabolic rate was lowest during the photophase and then measured [Formula: see text], [Formula: see text], and TEWL at six temperatures (12°, 20°, 24°, 27°, 29°, and 30°C) during this phase. Consistent with our predictions, we found that mass-adjusted [Formula: see text], [Formula: see text], and TEWL increased at least 3.5-fold between 12° and 30°C (at 30°C, rates were 2.509 mL g-1 h-1, 2.001 mL g-1 h-1, and 1.829 mg-1 g-1 h-1, respectively). Temperature coefficients (Q10 values) for mass-adjusted [Formula: see text] and TEWL showed thermal dependence between 12° and 29°C but with a reduced increase or thermal independence between 29° and 30°C. There was no observed effect of egg incubation temperature (inferred sex) on the subsequent metabolic rates of juveniles. The respiratory exchange ratio implied a switch from carbohydrate metabolism at <22°C to lipid metabolism at >27°C. The rigorous measurement of [Formula: see text] and TEWL provides a basis for future studies to predict the thermal sensitivity of tuatara to human-mediated climate change.


Subject(s)
Basal Metabolism/physiology , Climate , Hot Temperature , Reptiles/physiology , Water Loss, Insensible/physiology , Animals , Circadian Rhythm , Female , Male
20.
J Exp Zool B Mol Dev Evol ; 330(3): 165-180, 2018 05.
Article in English | MEDLINE | ID: mdl-29656535

ABSTRACT

The evolution of viviparity requires eggshell thinning to bring together the maternal uterus and extraembryonic membranes to form placentae for physiological exchanges. Eggshell thinning likely involves reduced activity of the uterine glands that secrete it. We tested these hypotheses by comparing the uterine and eggshell structure and histochemistry among oviparous and viviparous water snakes (Helicops) using phylogenetic methods. Eggshell thinning occurred convergently in all three origins of viviparity in Helicops and was accomplished by the loss of the mineral layer and thinning of the shell membrane. Uterine glands secrete the shell membrane in both oviparous and viviparous Helicops. These glands increase during vitellogenesis regardless of the reproductive mode, but they always reach smaller sizes in viviparous forms. As there is no phylogenetic signal in eggshell thickness and gland dimensions, we conclude that interspecific differences are related to reproductive mode and not phylogeny. Therefore, our results support the hypothesis that eggshell thinning is associated with the evolution of viviparity and that such thinning result from a reduction in gland size in viviparous taxa. Interestingly, the shell membrane thickness of viviparous females of the reproductively bimodal Helicops angulatus is intermediate between their oviparous and viviparous congeners. Thus, although eggshell thinning is required by the evolution of viviparity, a nearly complete loss of this structure is not. However, uterine gland dimensions are similar across viviparous Helicops. Fewer glands or their functional repurposing may explain the thinner shell membrane in viviparous species of Helicops in comparison to viviparous females of the bimodal H. angulatus.


Subject(s)
Biological Evolution , Egg Shell/physiology , Snakes/physiology , Uterus/physiology , Viviparity, Nonmammalian/genetics , Viviparity, Nonmammalian/physiology , Animals , Embryo, Nonmammalian/physiology , Female , Snakes/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...