Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(4): e0232054, 2020.
Article in English | MEDLINE | ID: mdl-32352994

ABSTRACT

Microbial source tracking and a mass balance approach were used to identify sources of fecal indicator bacteria (FIB) in the Hanalei River, Kaua'i, Hawai'i. Historically, concentrations enterococci and Clostridium perfringens were significantly higher during storm flows compared to non-storm flows in the Hanalei River, and correlated to total suspended solids in the river. During targeted dry weather studies, the Hanalei River bed sediments and streambank soils were documented to harbor E. coli, enterococci, and the human- and pig-specific fecal markers in Bacteroidales, suggesting that sediments and soils may be potential sources of these microorganisms to the Hanalei river. The human-specific marker in Bacteroidales was four times as likely to be detected in sediment and soil samples as in water samples. Furthermore, the occurrence of host-specific source tracking markers is indicative that a portion of FIB present in the Hanalei River are of fecal origin. A mass balance approach was used to explore causes of observed FIB loadings and losses along different reaches of the river. Resuspension or deposition of FIB-laden river sediments cannot account for changes in E. coli and enterococci concentrations along the river during dry weather. Additionally, losses due to bacterial inactivation were insignificant. Groundwater and ditches draining agricultural and urban lands were shown to provide sufficient FIB fluxes to account for the observed loads along some river reaches. The presence of the human-specific Bacteroidales marker in the river water, sediments and adjacent soils, as well as the presence of the human enterovirus marker in the water, suggests that there is widespread human fecal contamination in the Hanalei River that is likely a result of nearby wastewater disposal systems.


Subject(s)
Environmental Monitoring/methods , Rivers/microbiology , Bacteria , Bacteroidetes , Enterococcus , Feces/microbiology , Hawaii , Water , Water Microbiology , Water Pollution
2.
FEMS Microbiol Ecol ; 77(1): 40-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21385189

ABSTRACT

Algae on freshwater beaches can serve as reservoirs for fecal indicator bacteria (FIB). Wrack (especially kelp) at marine beaches might sustain FIB as well. This study examines the relationship between beach wrack, FIB, and surrounding water and sediment at marine beaches along the California coast. Surveys of southern and central California beaches were conducted to observe environmental wrack-associated FIB concentrations. FIB concentrations normalized to dry weight were the highest in stranded dry wrack, followed by stranded wet and suspended 'surf' wrack. Laboratory microcosms were conducted to examine the effect of wrack on FIB persistence in seawater and sediment. Indigenous enterococci and Escherichia coli incubated in a seawater microcosm containing wrack showed increased persistence relative to those incubated in a microcosm without wrack. FIB concentrations in microcosms containing wrack-covered sand were significantly higher than those in uncovered sand after several days. These findings implicate beach wrack as an important FIB reservoir. The presence of wrack may increase water and sediment FIB levels, altering the relationship between FIB levels and actual health risk while possibly leading to beach closures. Further work will need to investigate the possibility of FIB growth on wrack and the potential for pathogen presence.


Subject(s)
Escherichia coli/isolation & purification , Feces/microbiology , Kelp/microbiology , Seawater/microbiology , Silicon Dioxide/analysis , Water Microbiology , California , Environmental Monitoring/methods , Escherichia coli/growth & development , Water Movements , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...