Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Health Perspect ; 131(12): 125003, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38109120

ABSTRACT

BACKGROUND: Recently enacted environmental justice policies in the United States at the state and federal level emphasize addressing place-based inequities, including persistent disparities in air pollution exposure and associated health impacts. Advances in air quality measurement, models, and analytic methods have demonstrated the importance of finer-scale data and analysis in accurately quantifying the extent of inequity in intraurban pollution exposure, although the necessary degree of spatial resolution remains a complex and context-dependent question. OBJECTIVE: The objectives of this commentary were to a) discuss ways to maximize and evaluate the effectiveness of efforts to reduce air pollution disparities, and b) argue that environmental regulators must employ improved methods to project, measure, and track the distributional impacts of new policies at finer geographic and temporal scales. DISCUSSION: The historic federal investments from the Inflation Reduction Act, the Infrastructure Investment and Jobs Act, and the Biden Administration's commitment to Justice40 present an unprecedented opportunity to advance climate and energy policies that deliver real reductions in pollution-related health inequities. In our opinion, scientists, advocates, policymakers, and implementing agencies must work together to harness critical advances in air quality measurements, models, and analytic methods to ensure success. https://doi.org/10.1289/EHP13063.


Subject(s)
Air Pollution , Air Pollution/prevention & control , Environmental Pollution , Climate , Environmental Policy
3.
Environ Sci Technol ; 51(4): 1953-1961, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28075579

ABSTRACT

Low-income households may be disproportionately affected by ozone pollution and ozone policy. We quantify how three factors affect the relative benefits of ozone policies with household income: (1) unequal ozone reductions; (2) policy delay; and (3) economic valuation methods. We model ozone concentrations under baseline and policy conditions across the full continental United States to estimate the distribution of ozone-related health impacts across nine income groups. We enhance an economic model to include these impacts across household income categories, and present its first application to evaluate the benefits of ozone reductions for low-income households. We find that mortality incidence rates decrease with increasing income. Modeled ozone levels yield a median of 11 deaths per 100 000 people in 2005. Proposed policy reduces these rates by 13%. Ozone reductions are highest among low-income households, which increases their relative welfare gains by up to 4% and decreases them for the rich by up to 8%. The median value of reductions in 2015 is either $30 billion (in 2006 U.S. dollars) or $1 billion if reduced mortality risks are valued with willingness-to-pay or as income from increased life expectancy. Ozone reductions were relatively twice as beneficial for the lowest- compared to the highest-income households. The valuation approach affected benefits more than a policy delay or differential ozone reductions with income.


Subject(s)
Income , Ozone , Humans , Models, Theoretical , Poverty , Socioeconomic Factors , United States
4.
J Air Waste Manag Assoc ; 67(4): 445-461, 2017 04.
Article in English | MEDLINE | ID: mdl-27819534

ABSTRACT

Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas. IMPLICATIONS: In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal land managers as well as regulators in states heavy in oil and gas production as they consider control strategies to reduce the impact of development.


Subject(s)
Air Pollution , Models, Theoretical , Oil and Gas Industry , Air Pollutants , Environmental Monitoring , Humans , Ozone , Parks, Recreational , United States
5.
J Air Waste Manag Assoc ; 66(10): 988-1002, 2016 10.
Article in English | MEDLINE | ID: mdl-27216236

ABSTRACT

UNLABELLED: To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario. IMPLICATIONS: In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Carbon/analysis , Environmental Policy/legislation & jurisprudence , Ozone/analysis , Particulate Matter/analysis , Environmental Monitoring , Gases/analysis , Greenhouse Effect/legislation & jurisprudence , Humans , Models, Theoretical , United States
6.
J Air Waste Manag Assoc ; 65(1): 74-89, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25946960

ABSTRACT

Air quality co-benefits can potentially reduce the costs of greenhouse gas mitigation. However, whereas many studies of the cost of greenhouse gas mitigation model the macroeconomic welfare impacts of mitigation, most studies of air quality co-benefits do not. We employ a U.S. computable general equilibrium economic model previously linked to an air quality modeling system and enhance it to represent the economy-wide welfare impacts of fine particulate matter. We present a first application of this method to explore the efficiency and distributional implications of a Clean Energy Standard (CES) and a Cap and Trade (CAT) program that both reduce CO2emissions by 10% in 2030 relative to 2006. We find that co-benefits from fine particulate matter reduction (median $6; $2 to $10/tCO2) completely offset policy costs by 110% (40% to 190%), transforming the net welfare impact of the CAT into a gain of $1 (-$5 to $7) billion 2005$. For the CES, the corresponding co-benefit (median $8; $3 to $14/tCO2) is a smaller fraction (median 5%; 2% to 9%) of its higher policy cost. The eastern United States garners 78% and 71% of co-benefits for the CES and CAT, respectively. By representing the effects of pollution-related morbidities and mortalities as an impact to labor and the demand for health services, we find that the welfare impact per unit of reduced pollution varies by region. These interregional differences can enhance the preference of some regions, such as Texas, for a CAT over a CES, or switch the calculation of which policy yields higher co-benefits, compared with an approach that uses one valuation for all regions. This framework could be applied to quantify consistent air quality impacts of other pricing instruments, subnational trading programs, or green tax swaps.


Subject(s)
Air Pollution/economics , Air Pollution/legislation & jurisprudence , Global Warming/legislation & jurisprudence , Models, Economic , Air Pollution/adverse effects , Air Pollution/prevention & control , Climate , Global Warming/prevention & control , Humans , Particulate Matter/economics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...