Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 536, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087090

ABSTRACT

CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Phosphofructokinase-2/metabolism , Animals , Autophagy , Child, Preschool , Disease Models, Animal , Female , Humans , Lysosomal Storage Diseases/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Male , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Neuronal Ceroid-Lipofuscinoses/genetics , Neurons/metabolism , Phosphofructokinase-2/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...