Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol Sci ; 434: 120121, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34998239

ABSTRACT

The rapid evolution of neuromodulation techniques includes an increasing amount of research into stimulation paradigms that are guided by patients' neurophysiology, to increase efficacy and responder rates. Treatment personalisation and target engagement have shown to be effective in fields such as Parkinson's disease, and closed-loop paradigms have been successfully implemented in cardiac defibrillators. Promising avenues are being explored for physiologically informed neuromodulation in psychiatry. Matching the stimulation frequency to individual brain rhythms has shown some promise in transcranial magnetic stimulation (TMS). Matching the phase of those rhythms may further enhance neuroplasticity, for instance when combining TMS with electroencephalographic (EEG) recordings. Resting-state EEG and event-related potentials may be useful to demonstrate connectivity between stimulation sites and connected areas. These techniques are available today to the psychiatrist to diagnose underlying sleep disorders, epilepsy, or lesions as contributing factors to the cause of depression. These technologies may also be useful in assessing the patient's brain network status prior to deciding on treatment options. Ongoing research using invasive recordings may allow for future identification of mood biomarkers and network structure. A core limitation is that biomarker research may currently be limited by the internal heterogeneity of psychiatric disorders according to the current DSM-based classifications. New approaches are being developed and may soon be validated. Finally, care must be taken when incorporating closed-loop capabilities into neuromodulation systems, by ensuring the safe operation of the system and understanding the physiological dynamics. Neurophysiological tools are rapidly evolving and will likely define the next generation of neuromodulation therapies.


Subject(s)
Electroencephalography , Epilepsy , Brain/physiology , Electroencephalography/methods , Evoked Potentials , Humans , Transcranial Magnetic Stimulation/methods
2.
Cell Mol Neurobiol ; 42(6): 1829-1839, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33656634

ABSTRACT

Despite the widespread use of the SH-SY5Y human neuroblastoma cell line in modeling human neurons in vitro, protocols for growth, differentiation and experimentation differ considerably across the literature. Many studies fully differentiate SH-SY5Y cells before experimentation, to investigate plasticity measures in a mature, human neuronal-like cell model. Prior to experimentation, serum is often removed from cell culture media, to arrest the cell growth cycle and synchronize cells. However, the exact effect of this serum removal before experimentation on mature, differentiated SH-SY5Y cells has not yet been described. In studies using differentiated SH-SY5Y cells, any effect of serum removal on plasticity markers may influence results. The aim of the current study was to systematically characterize, in differentiated, neuronal-like SH-SY5Y cells, the potentially confounding effects of complete serum removal in terms of morphological and gene expression markers of plasticity. We measured changes in commonly used morphological markers and in genes related to neuroplasticity and synaptogenesis, particularly in the BDNF-TrkB signaling pathway. We found that complete serum removal from already differentiated SH-SY5Y cells increases neurite length, neurite branching, and the proportion of cells with a primary neurite, as well as proportion of ßIII-Tubulin and MAP2 expressing cells. Gene expression results also indicate increased expression of PSD95 and NTRK2 expression 24 h after serum removal. We conclude that serum deprivation in differentiated SH-SY5Y cells affects morphology and gene expression and can potentially confound plasticity-related outcome measures, having significant implications for experimental design in studies using differentiated SH-SY5Y cells as a model of human neurons.


Subject(s)
Neuroblastoma , Biomarkers/metabolism , Cell Differentiation , Cell Line, Tumor , Gene Expression , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neurons/metabolism
3.
Front Mol Neurosci ; 13: 528396, 2020.
Article in English | MEDLINE | ID: mdl-33192288

ABSTRACT

Transcranial Magnetic Stimulation (TMS) is a form of non-invasive brain stimulation, used to alter cortical excitability both in research and clinical applications. The intermittent and continuous Theta Burst Stimulation (iTBS and cTBS) protocols have been shown to induce opposite after-effects on human cortex excitability. Animal studies have implicated synaptic plasticity mechanisms long-term potentiation (LTP, for iTBS) and depression (LTD, for cTBS). However, the neural basis of TMS effects has not yet been studied in human neuronal cells, in particular at the level of gene expression and synaptogenesis. To investigate responses to TBS in living human neurons, we differentiated human SH-SY5Y cells toward a mature neural phenotype, and stimulated them with iTBS, cTBS, or sham (placebo) TBS. Changes in (a) mRNA expression of a set of target genes (previously associated with synaptic plasticity), and (b) morphological parameters of neurite outgrowth following TBS were quantified. We found no general effects of stimulation condition or time on gene expression, though we did observe a significantly enhanced expression of plasticity genes NTRK2 and MAPK9 24 h after iTBS as compared to sham TBS. This specific effect provides unique support for the widely assumed plasticity mechanisms underlying iTBS effects on human cortex excitability. In addition to this protocol-specific increase in plasticity gene expression 24 h after iTBS stimulation, we establish the feasibility of stimulating living human neuron with TBS, and the importance of moving to more complex human in vitro models to understand the underlying plasticity mechanisms of TBS stimulation.

5.
Eur J Neurosci ; 51(11): 2299-2313, 2020 06.
Article in English | MEDLINE | ID: mdl-31943418

ABSTRACT

In recent years, the influence of alpha (7-13 Hz) phase on visual processing has received a lot of attention. Magneto-/encephalography (M/EEG) studies showed that alpha phase indexes visual excitability and task performance. Studies with transcranial alternating current stimulation (tACS) aim to modulate oscillations and causally impact task performance. Here, we applied right occipital tACS (O2 location) to assess the functional role of alpha phase in a series of experiments. We presented visual stimuli at different pre-determined, experimentally controlled, phases of the entraining tACS signal, hypothesizing that this should result in an oscillatory pattern of visual performance in specifically left hemifield detection tasks. In experiment 1, we applied 10 Hz tACS and used separate psychophysical staircases for six equidistant tACS-phase conditions, obtaining contrast thresholds for detection of visual gratings in left or right hemifield. In experiments 2 and 3, tACS was at EEG-based individual peak alpha frequency. In experiment 2, we measured detection rates for gratings with (pseudo-)fixed contrast. In experiment 3, participants detected brief luminance changes in a custom-built LED device, at eight equidistant alpha phases. In none of the experiments did the primary outcome measure over phase conditions consistently reflect a one-cycle sinusoid. However, post hoc analyses of reaction times (RT) suggested that tACS alpha phase did modulate RT for specifically left hemifield targets in both experiments 1 and 2 (not measured in experiment 3). This observation requires future confirmation, but is in line with the idea that alpha phase causally gates visual inputs through cortical excitability modulation.


Subject(s)
Transcranial Direct Current Stimulation , Attention , Humans , Reaction Time , Task Performance and Analysis , Visual Perception
7.
Prog Mol Biol Transl Sci ; 158: 129-157, 2018.
Article in English | MEDLINE | ID: mdl-30072051

ABSTRACT

The Wnt signaling pathway has been recognized as an important pathway, extending its function throughout the lifespan. Evidence suggests that dysfunctional Wnt signaling in the adult brain leads to aberrant neurogenesis, synaptogenesis, modulation of mature synapses and neurotransmitter release in the hippocampus. Due to the involvement of Wnt proteins in hippocampal functioning, altered Wnt signaling has been suggested to be an important factor in the pathophysiology of mood disorders. Interestingly, the effects of mood-stabilizing drugs are believed to work through interactions with Wnt molecules, and epigenetic mechanisms have been shown to interact with components of the Wnt pathway and impact mechanisms such as synaptic plasticity. This can affect learning and memory formation, in addition to various behavioral outcomes in individuals, when they are faced with stressful or conflict situations. This review will discuss the integrated role of Wnt signaling in the context of appropriate stress response, which is believed to be mediated by adult hippocampal neurogenesis and plasticity. Current knowledge regarding the role of Wnt signaling in mood disorders and antidepressant medication effect will be covered. Finally, the interplay between Wnt signaling and epigenetic mechanisms will be discussed along with their combined potential to impact neuroplasticity.


Subject(s)
Epigenesis, Genetic , Hippocampus/metabolism , Neurogenesis/genetics , Neuronal Plasticity/genetics , Stress, Psychological/genetics , Wnt Signaling Pathway/genetics , Animals , Humans
8.
PLoS One ; 12(3): e0174331, 2017.
Article in English | MEDLINE | ID: mdl-28362843

ABSTRACT

Cognitive effort and self-control are exhausting. Although evidence is ambiguous, behavioural studies have repeatedly suggested that control-demanding tasks seem to deplete a limited cache of self-regulatory resources leading to performance degradations and fatigue. While resource depletion has indirectly been associated with a decline in right prefrontal cortex capacity, its precise neural underpinnings have not yet been revealed. This study consisted of two independent experiments, which set out to investigate the causal role of the right dorsolateral prefrontal cortex (DLPFC) in a classic dual phase depletion paradigm employing non-invasive brain stimulation. In Experiment 1 we demonstrated a general depletion effect, which was significantly eliminated by anodal transcranial Direct Current Stimulation to the right DLPFC. In Experiment 2, however, we failed to replicate the basic psychological depletion effect within a second independent sample. The dissimilar results are discussed in the context of the current 'replication crisis' and suggestions for future studies are offered. While our current results do not allow us to firmly argue for or against the existence of resource depletion, we outline why it is crucial to further clarify which specific external and internal circumstances lead to limited replicability of the described effect. We showcase and discuss the current inter-lab replication problem based on two independent samples tested within one research group (intra-lab).


Subject(s)
Deep Brain Stimulation/methods , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Prefrontal Cortex/physiology , Reaction Time/physiology , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...