Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747287

ABSTRACT

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Subject(s)
Angiopoietin-2 , Forkhead Box Protein O1 , Ion Channels , Lymphangiogenesis , Lymphedema , Receptor, TIE-1 , Signal Transduction , Animals , Humans , Mice , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , Endothelial Cells/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Ion Channels/metabolism , Ion Channels/genetics , Lymphangiogenesis/genetics , Lymphedema/metabolism , Lymphedema/genetics , Lymphedema/pathology , Mechanotransduction, Cellular , Receptor, TIE-1/metabolism , Receptor, TIE-1/genetics
2.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559191

ABSTRACT

Endomucin (EMCN) is a 261 AA transmembrane glycoprotein that is highly expressed by venous and capillary endothelial cells where it plays a role in VEGF-mediated angiogenesis and regulation of immune cell recruitment. However, it is better known as a histological marker, where it has become widespread due to the commercial availability of high-quality antibodies that work under a wide range of conditions and in many tissues. The specificity of EMCN staining has been well-validated in retinal vessels, but while it has been used extensively as a marker in other tissues of the eye, including the choroid, the pattern of expression has not been described in detail. Here, in addition to endothelial expression in the choriocapillaris and deeper vascular layers, we characterize a population of EMCN-positive perivascular cells in the mouse choroid that did not co-localize with cells expressing other endothelial markers such as PECAM1 or PODXL. To confirm that these cells represented a new population of EMCN-expressing stromal cells, we then performed single cell RNA sequencing in choroids from adult wild-type mice. Analysis of this new dataset confirmed that, in addition to endothelial cells, Emcn mRNA expression was present in choroidal pericytes and a subset of fibroblasts, but not vascular smooth muscle cells. Besides Emcn , no known endothelial gene expression was detected in these cell populations, confirming that they did not represent endothelial-stromal doublets, a common technical artifact in single cell RNA seq datasets. Instead, choroidal Emcn -expressing fibroblasts exhibited high levels of chemokine and interferon signaling genes, while Emcn -negative fibroblasts were enriched in genes encoding extracellular matrix proteins. Emcn expressing fibroblasts were also detected in published datasets from mouse brain and human choroid, suggesting that stromal Emcn expression was not unique to the choroid and was evolutionarily conserved. Together, these findings highlight unique fibroblast and pericyte populations in the choroid and provide new context for the role of EMCN in angiogenesis and immune cell recruitment.

3.
Exp Eye Res ; 238: 109741, 2024 01.
Article in English | MEDLINE | ID: mdl-38056552

ABSTRACT

A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.


Subject(s)
Choroidal Neovascularization , Hydrogen Peroxide , Adult , Humans , Animals , Mice , Melanins , Mice, Inbred C57BL , Choroid/blood supply , Retina/pathology , Choroidal Neovascularization/pathology
4.
JCI Insight ; 8(23)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917183

ABSTRACT

The management of preretinal fibrovascular membranes, a devastating complication of advanced diabetic retinopathy (DR), remains challenging. We characterized the molecular profile of cell populations in these fibrovascular membranes to identify potentially new therapeutic targets. Preretinal fibrovascular membranes were surgically removed from patients and submitted for single-cell RNA-Seq (scRNA-Seq). Differential gene expression was implemented to define the transcriptomics profile of these cells and revealed the presence of endothelial, inflammatory, and stromal cells. Endothelial cell reclustering identified subclusters characterized by noncanonical transcriptomics profile and active angiogenesis. Deeper investigation of the inflammatory cells showed a subcluster of macrophages expressing proangiogenic cytokines, presumably contributing to angiogenesis. The stromal cell cluster included a pericyte-myofibroblast transdifferentiating subcluster, indicating the involvement of pericytes in fibrogenesis. Differentially expressed gene analysis showed that Adipocyte Enhancer-binding Protein 1, AEBP1, was significantly upregulated in myofibroblast clusters, suggesting that this molecule may have a role in transformation. Cell culture experiments with human retinal pericytes (HRP) in high-glucose condition confirmed the molecular transformation of pericytes toward myofibroblastic lineage. AEBP1 siRNA transfection in HRP reduced the expression of profibrotic markers in high glucose. In conclusion, AEBP1 signaling modulates pericyte-myofibroblast transformation, suggesting that targeting AEBP1 could prevent scar tissue formation in advanced DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/metabolism , Retina/metabolism , Pericytes/metabolism , Glucose/metabolism , Gene Expression Profiling , Diabetes Mellitus/metabolism , Carboxypeptidases/metabolism , Repressor Proteins/genetics
5.
J Am Soc Nephrol ; 34(6): 969-987, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36787763

ABSTRACT

SIGNIFICANCE STATEMENT: Ischemia-reperfusion AKI (IR-AKI) is common and causes significant morbidity. Effective treatments are lacking. However, preclinical studies suggest that inhibition of angiopoietin-Tie2 vascular signaling promotes injury, whereas activation of Tie2 is protective. We show that kidney ischemia leads to increased levels of the endothelial-specific phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP; PTPRB), which inactivates Tie2. Activation of Tie2 through VE-PTP deletion, or delivery of a novel angiopoietin mimetic (Hepta-ANG1), abrogated IR-AKI in mice. Single-cell RNAseq analysis showed Tie2 activation promotes increased Entpd1 expression, downregulation of FOXO1 target genes in the kidney vasculature, and emergence of a new subpopulation of glomerular endothelial cells. Our data provide a molecular basis and identify a candidate therapeutic to improve endothelial integrity and kidney function after IR-AKI. BACKGROUND: Ischemia-reperfusion AKI (IR-AKI) is estimated to affect 2%-7% of all hospitalized patients. The significant morbidity and mortality associated with AKI indicates urgent need for effective treatments. Previous studies have shown activation of the vascular angiopoietin-Tie2 tyrosine kinase signaling pathway abrogates ischemia-reperfusion injury (IRI). We extended previous studies to (1) determine the molecular mechanism(s) underlying kidney injury and protection related to decreased or increased activation of Tie2, respectively, and (2) to test the hypothesis that deletion of the Tie2 inhibitory phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP) or injection of a new angiopoietin mimetic protects the kidney from IRI by common molecular mechanism(s). METHODS: Bilateral IR-AKI was performed in VE-PTP wild-type or knockout mice and in C57BL/6J mice treated with Hepta-ANG1 or vehicle. Histologic, immunostaining, and single-cell RNA sequencing analyses were performed. RESULTS: The phosphatase VE-PTP, which negatively regulates the angiopoietin-Tie2 pathway, was upregulated in kidney endothelial cells after IRI, and genetic deletion of VE-PTP in mice protected the kidney from IR-AKI. Injection of Hepta-ANG1 potently activated Tie2 and protected the mouse kidney from IRI. Single-cell RNAseq analysis of kidneys from Hepta-ANG1-treated and vehicle-treated mice identified endothelial-specific gene signatures and emergence of a new glomerular endothelial subpopulation associated with improved kidney function. Overlap was found between endothelial-specific genes upregulated by Hepta-ANG1 treatment and those downregulated in HUVECs with constitutive FOXO1 activation, including Entpd1 / ENTPD1 that modulates purinergic receptor signaling. CONCLUSIONS: Our data support a key role of the endothelium in the development of IR-AKI, introduce Hepta-ANG1 as a putative new therapeutic biologic, and report a model to explain how IRI reduces Tie2 signaling and how Tie2 activation protects the kidney. PODCAST: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_05_23_JSN_Ang_EP23_052323.mp3.


Subject(s)
Acute Kidney Injury , Endothelial Cells , Mice , Animals , Endothelial Cells/metabolism , Angiopoietins/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Mice, Inbred C57BL , Endothelium/metabolism , Kidney/metabolism , Signal Transduction , Receptor, TIE-2/genetics , Angiopoietin-1/therapeutic use , Mice, Knockout , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Ischemia/complications , Ischemia/metabolism
6.
Arterioscler Thromb Vasc Biol ; 42(11): 1413-1427, 2022 11.
Article in English | MEDLINE | ID: mdl-36172864

ABSTRACT

BACKGROUND: The choroidal vasculature, including the choriocapillaris and vortex veins, is essential for providing nutrients to the metabolically demanding photoreceptors and retinal pigment epithelium. Choroidal vascular dysfunction leads to vision loss and is associated with age-related macular degeneration and the poorly understood pachychoroid diseases including central serous chorioretinopathy and polypoidal choroidal vasculopathy that are characterized by formation of dilated pachyvessels throughout the choroid. METHODS: Using neural crest-specific Angpt1 knockout mice, we show that Angiopoietin 1, a ligand of the endothelial receptor TEK (also known as Tie2) is essential for choriocapillaris development and vortex vein patterning. RESULTS: Lacking choroidal ANGPT1, neural crest-specific Angpt1 knockout eyes exhibited marked choriocapillaris attenuation and 50% reduction in number of vortex veins, with only 2 vortex veins present in the majority of eyes. Shortly after birth, dilated choroidal vessels resembling human pachyvessels were observed extending from the remaining vortex veins and displacing the choriocapillaris, leading to retinal pigment epithelium dysfunction and subretinal neovascularization similar to that seen in pachychoroid disease. CONCLUSIONS: Together, these findings identify a new role for ANGPT1 in ocular vascular development and demonstrate a clear link between vortex vein dysfunction, pachyvessel formation, and disease.


Subject(s)
Angiopoietin-1 , Central Serous Chorioretinopathy , Humans , Mice , Animals , Angiopoietin-1/genetics , Ligands , Tomography, Optical Coherence , Choroid/blood supply , Retrospective Studies
7.
Bio Protoc ; 12(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35865116

ABSTRACT

Single cell RNA sequencing is a powerful tool that can be used to identify distinct cell types and transcriptomic differences within complex tissues. It has proven to be especially useful in tissues of the eye, where investigators have identified novel cell types within the retina, anterior chamber, and iridocorneal angle and explored transcriptomic contribution to disease phenotypes in age-related macular degeneration. However, to obtain high quality results, the technique requires isolation of healthy single cells from the tissue of interest, seeking complete tissue digestion while minimizing stress and transcriptomic changes in the isolated cells prior to library preparation. Here, we present a protocol developed in our laboratory for isolation of live single cells from the murine iridocorneal angle, which includes Schlemm's canal and the trabecular meshwork, suitable for single cell RNA sequencing, flow cytometry, or other downstream analysis. Graphical abstract.

8.
Arterioscler Thromb Vasc Biol ; 42(3): 348-351, 2022 03.
Article in English | MEDLINE | ID: mdl-35021855

ABSTRACT

BACKGROUND: Schlemm's canal (SC) is a large vessel residing in the iridocorneal angle and is required to regulate aqueous humor outflow. Normal SC structure and function is indispensable for maintaining normal intraocular pressure, and elevated intraocular pressure is a risk factor for development of glaucoma. Recent reports have identified a key role of the angiopoietin-Tie2 pathway for SC development and function; however, the role of the orphan receptor Tie1 has not been clarified. METHODS: We used Tie1 knock out mice to study the function of Tie1 in SC development and function. Real-time quantitative polymerase chain reaction and Western blot analyses were used to verify Tie1 deletion. High-resolution microscopy of mouse SC whole mount and cross sections were used to study SC morphology. Measurement of intraocular pressure in live mice was used to study the impact of Tie1 on SC function. RESULTS: Tie1 is highly expressed in both human and mouse SC. Tie1 knock out mice display hypomorphic SC and elevated intraocular pressure as a result of attenuated SC development. CONCLUSIONS: Tie1 is indispensable for SC development and function, supporting it as a novel target for future SC-targeted glaucoma therapies and a candidate gene for glaucoma in humans.


Subject(s)
Anterior Chamber/enzymology , Anterior Chamber/growth & development , Endothelium, Corneal/enzymology , Receptor, TIE-1/metabolism , Animals , Aqueous Humor/physiology , Glaucoma/etiology , Humans , Intraocular Pressure/physiology , Lymphatic Vessels/abnormalities , Lymphatic Vessels/enzymology , Lymphatic Vessels/physiology , Mice , Mice, Knockout , Models, Animal , Receptor, TIE-1/deficiency , Receptor, TIE-1/genetics
9.
Nat Commun ; 12(1): 6072, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663817

ABSTRACT

Primary congenital glaucoma (PCG) is a severe disease characterized by developmental defects in the trabecular meshwork (TM) and Schlemm's canal (SC), comprising the conventional aqueous humor outflow pathway of the eye. Recently, heterozygous loss of function variants in TEK and ANGPT1 or compound variants in TEK/SVEP1 were identified in children with PCG. Moreover, common variants in ANGPT1and SVEP1 have been identified as risk alleles for primary open angle glaucoma (POAG) in GWAS studies. Here, we show tissue-specific deletion of Angpt1 or Svep1 from the TM causes PCG in mice with severe defects in the adjacent SC. Single-cell transcriptomic analysis of normal and glaucomatous Angpt1 deficient eyes allowed us to identify distinct TM and SC cell populations and discover additional TM-SC signaling pathways. Furthermore, confirming the importance of angiopoietin signaling in SC, delivery of a recombinant ANGPT1-mimetic promotes developmental SC expansion in healthy and Angpt1 deficient eyes, blunts intraocular pressure (IOP) elevation and RGC loss in a mouse model of PCG and lowers IOP in healthy adult mice. Our data highlight the central role of ANGPT1-TEK signaling and TM-SC crosstalk in IOP homeostasis and provide new candidates for SC-targeted glaucoma therapy.


Subject(s)
Aqueous Humor/metabolism , Cell Communication/physiology , Glaucoma, Open-Angle/pathology , Glaucoma, Open-Angle/therapy , Angiopoietin-1/administration & dosage , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Animals , Anterior Chamber/blood supply , Anterior Chamber/cytology , Anterior Chamber/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Communication/drug effects , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Profiling , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Intraocular Pressure/drug effects , Intraocular Pressure/genetics , Mice , Mice, Knockout , Neural Crest/cytology , Neural Crest/metabolism , Proteins/genetics , Proteins/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Single-Cell Analysis , Trabecular Meshwork/cytology , Trabecular Meshwork/metabolism
10.
J Neuroinflammation ; 17(1): 341, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33187533

ABSTRACT

BACKGROUND: Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Macrophages are heterogeneous cells that are necessary for experimental CNV, present in human CNV samples, and can display diverse functions, which are dependent upon both their origin and tissue microenvironment. Despite these associations, choroidal macrophage heterogeneity remains unexplored. METHODS: We performed multi-parameter flow cytometry on wildtype (WT) and Ccr2-/- mice after laser injury to identify macrophage subtypes, and determine which subsets originate from classical monocytes. To fate map tissue resident macrophages at steady state and after laser injury, we used the Cx3cr1CreER/+ ; Rosa26zsGFP/+ mouse model. We reanalyzed previously published single-cell RNA-seq of human choroid samples from healthy and nAMD patients to investigate human macrophage heterogeneity, disease association, and function. RESULTS: We identified 4 macrophage subsets in mice: microglia, MHCII+CD11c-, MHCII+CD11c+, and MHCII-. Microglia are tissue resident macrophages at steady state and unaffected by laser injury. At steady state, MHCII- macrophages are long lived, tissue resident macrophages, while MHCII+CD11c- and MHCII+CD11c+ macrophages are partially replenished from blood monocytes. After laser injury, MHCII+CD11c- macrophages are entirely derived from classical monocytes, MHCII- macrophages originate from classical monocytes (90%) and an expansion of tissue resident macrophages (10%), and MHCII+CD11c+ macrophages are derived from classical monocytes (70%), non-classical monocytes (10%), and an expansion of tissue resident macrophages (20%). Single-cell RNA-seq analysis of human choroid found 5 macrophage subsets: two MHCII+CD11C- and three MHCII+CD11C+ populations. One MHCII+CD11C+ subset was 78% derived from a patient with nAMD. Differential expression analysis identified up-regulation of pro-angiogenic gene expression in one MHCII+CD11C- and two MHCII+CD11C+ subsets, including the disease-associated cluster. The upregulated MHCII+CD11C- pro-angiogenic genes were unique compared to the increased MHCII+CD11C+ angiogenesis genes. CONCLUSIONS: Macrophage origin impacts heterogeneity at steady state and after laser injury in mice. Both mice and human patients demonstrate similar macrophage subtypes. Two discrete pro-angiogenic macrophage populations exist in the human choroid. Targeting specific, pro-angiogenic macrophage subsets is a potential novel therapeutic for nAMD.


Subject(s)
Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Genetic Heterogeneity , Macrophages/metabolism , Animals , Choroidal Neovascularization/pathology , Female , Laser Therapy/adverse effects , Macrophages/pathology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
11.
Transl Vis Sci Technol ; 9(4): 16, 2020 03.
Article in English | MEDLINE | ID: mdl-32818103

ABSTRACT

Purpose: A leading cause of blindness worldwide, glaucoma is often caused by elevated intraocular pressure (IOP) due to impaired aqueous humor outflow from the anterior chamber through Schlemm's canal (SC) and the trabecular meshwork. Despite the large clinical burden, glaucoma research and drug development are hindered by a limited selection of preclinical models that accurately recapitulate human disease. Here, we propose that Angpt1 conditional knockout mice may provide one such model. Angiopoietin/TEK (ANGPT/TEK) signaling is crucial for SC formation and integrity in mice and humans, and mice lacking TEK or its ligand ANGPT1 develop a hypomorphic SC insufficient for normal aqueous humor outflow. Methods: We used a comprehensive histology and physiology approach to characterize the glaucoma phenotype of Angpt1 inducible knockout mice, especially focusing on retina morphology and function. Results: Angpt1 deletion resulted in persistent ocular hypertension beginning in the first month after birth and leading to decreased visual acuity with age due to glaucomatous neuropathy. In the neural retina, we identified marked and specific loss of the retinal ganglion cells, whereas other retinal neurons exhibited largely normal morphology and patterning. Electroretinogram recordings demonstrated reduced scotopic threshold response, further indicating loss of retinal ganglion cell function. Conclusions: These findings highlight the potential of Angpt1 conditional knockout mice as a valuable new glaucoma model. Translational Relevance: Currently, few reliable, rapid-onset genetic glaucoma models are available, and Angpt1 knockout mice will provide an additional tool for studies of IOP-induced neural damage, mechanisms of disease progression, and novel treatment strategies.


Subject(s)
Angiopoietin-1 , Glaucoma, Open-Angle , Angiopoietin-1/genetics , Animals , Mice , Mice, Knockout , Models, Genetic , Signal Transduction
12.
Elife ; 82019 12 10.
Article in English | MEDLINE | ID: mdl-31820737

ABSTRACT

The lenticular fiber cells are comprised of extremely long-lived proteins while still maintaining an active biochemical state. Dysregulation of these activities has been implicated in diseases such as age-related cataracts. However, the lenticular protein dynamics underlying health and disease is unclear. We sought to measure the global protein turnover rates in the eye using nitrogen-15 labeling of mice and mass spectrometry. We measured the 14N/15N-peptide ratios of 248 lens proteins, including Crystallin, Aquaporin, Collagen and enzymes that catalyze glycolysis and oxidation/reduction reactions. Direct comparison of lens cortex versus nucleus revealed little or no 15N-protein contents in most nuclear proteins, while there were a broad range of 14N/15N ratios in cortex proteins. Unexpectedly, like Crystallins, many enzymes with relatively high abundance in nucleus were also exceedingly long-lived. The slow replacement of these enzymes in spite of young age of mice suggests their potential roles in age-related metabolic changes in the lens.


Subject(s)
Lens, Crystalline/enzymology , Lens, Crystalline/metabolism , Mass Spectrometry , Staining and Labeling , Animals , Cell Differentiation , Cell Nucleus/metabolism , Extracellular Matrix/metabolism , Eye Proteins/metabolism , Glycolysis , Mice, Inbred C57BL , Nitrogen Isotopes/metabolism , Oxidation-Reduction , Protein Biosynthesis , Proteome/metabolism
13.
Elife ; 82019 10 17.
Article in English | MEDLINE | ID: mdl-31621585

ABSTRACT

Elevated intraocular pressure (IOP) due to insufficient aqueous humor outflow through the trabecular meshwork and Schlemm's canal (SC) is the most important risk factor for glaucoma, a leading cause of blindness worldwide. We previously reported loss of function mutations in the receptor tyrosine kinase TEK or its ligand ANGPT1 cause primary congenital glaucoma in humans and mice due to failure of SC development. Here, we describe a novel approach to enhance canal formation in these animals by deleting a single allele of the gene encoding the phosphatase PTPRB during development. Compared to Tek haploinsufficient mice, which exhibit elevated IOP and loss of retinal ganglion cells, Tek+/-;Ptprb+/- mice have elevated TEK phosphorylation, which allows normal SC development and prevents ocular hypertension and RGC loss. These studies provide evidence that PTPRB is an important regulator of TEK signaling in the aqueous humor outflow pathway and identify a new therapeutic target for treatment of glaucoma.


Subject(s)
Gene Expression Regulation, Developmental , Glaucoma/genetics , Receptor, TIE-2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Retinal Ganglion Cells/enzymology , Alleles , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Animals , Aqueous Humor/enzymology , Cell Count , Disease Models, Animal , Gene Deletion , Glaucoma/enzymology , Glaucoma/pathology , Heterozygote , Humans , Intraocular Pressure/physiology , Mice , Mice, Knockout , Phosphorylation , Receptor, TIE-2/deficiency , Receptor-Like Protein Tyrosine Phosphatases, Class 3/deficiency , Retinal Ganglion Cells/pathology , Risk Factors , Signal Transduction , Trabecular Meshwork/enzymology , Trabecular Meshwork/pathology
14.
J Exp Med ; 216(4): 936-949, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30886059

ABSTRACT

Diabetic nephropathy is a leading cause of end-stage kidney failure. Reduced angiopoietin-TIE2 receptor tyrosine kinase signaling in the vasculature leads to increased vascular permeability, inflammation, and endothelial cell loss and is associated with the development of diabetic complications. Here, we identified a mechanism to explain how TIE2 signaling is attenuated in diabetic animals. Expression of vascular endothelial protein tyrosine phosphatase VE-PTP (also known as PTPRB), which dephosphorylates TIE2, is robustly up-regulated in the renal microvasculature of diabetic rodents, thereby reducing TIE2 activity. Increased VE-PTP expression was dependent on hypoxia-inducible factor transcriptional activity in vivo. Genetic deletion of VE-PTP restored TIE2 activity independent of ligand availability and protected kidney structure and function in a mouse model of severe diabetic nephropathy. Mechanistically, inhibition of VE-PTP activated endothelial nitric oxide synthase and led to nuclear exclusion of the FOXO1 transcription factor, reducing expression of pro-inflammatory and pro-fibrotic gene targets. In sum, we identify inhibition of VE-PTP as a promising therapeutic target to protect the kidney from diabetic injury.


Subject(s)
Diabetic Nephropathies/metabolism , Receptor, TIE-2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Animals , Cell Line , Disease Models, Animal , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Forkhead Box Protein O1/metabolism , Gene Knockdown Techniques , Humans , Kidney/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase/metabolism , RNA, Small Interfering/genetics
15.
Methods Mol Biol ; 1846: 153-160, 2018.
Article in English | MEDLINE | ID: mdl-30242758

ABSTRACT

Immunofluorescent confocal microscopy is a powerful tool for analysis of the morphology and development of vascular and lymphatic tissues. Schlemm's canal (SC) is a large, lymphatic-like vessel in the anterior chamber of the eye, which is essential for aqueous humor drainage required to maintain intraocular pressure and is sensitive to defects in blood and lymphatic vascular signaling pathways. Here, we describe a method to stain and quantify SC area and morphology in enucleated mouse eyes, providing a tool for understanding its development and function in small animal genetic or disease models.


Subject(s)
Anterior Chamber/metabolism , Fluorescent Antibody Technique , Lymphatic Vessels/metabolism , Microscopy, Confocal , Animals , Anterior Chamber/anatomy & histology , Image Processing, Computer-Assisted , Lymphatic Vessels/anatomy & histology , Mice , Microscopy, Confocal/methods
16.
Proc Natl Acad Sci U S A ; 115(36): 9032-9037, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30127000

ABSTRACT

The blood-aqueous barrier plays a key role in regulating aqueous humor homeostasis by selectively restricting passage of proteins into the eye. The kinetics of aqueous flow are traditionally measured using artificial markers; however, these marker molecules do not address the barrier's selective permeability to plasma proteins. Here we applied stable isotope labeling of all serum proteins with nitrogen-15 (15N) atoms. Following systemic injection of this "heavy" serum in mice, the 15N-to-endogenous nitrogen-14 (14N) ratio of each protein in aqueous was measured by mass spectrometry. By monitoring the kinetic changes in these ratios, we determined the permeability profiles of hundreds of serum proteins. Meanwhile, we subjected one of the eyes to neoangiogenic wound healing by inflicting injury to the corneal limbus and compared the 15N proteomes between the normal eyes and the recovering eyes at 2 weeks after injury. In the injured eye, we detected markedly enhanced permeability to inhibitory complement regulator proteins, such as Cfh, Cfhr, Cfb, Cfi, Cfd, and Vtn. Many of the proteins in this group are implicated in age-related macular degeneration associated with leakage of the blood-retinal barrier due to inflammation. To rule out the possibility that the observed leakage was due simply to physical damage of the blood vessels, we separately created a neovascularization model using an alkali burn of the avascular cornea. In this latter model, elevated levels of Cfh and Cfb were evident. These findings suggest that ocular neovascularization is associated with enhanced permeability to serum complement regulators.


Subject(s)
Blood Proteins/metabolism , Blood-Retinal Barrier/metabolism , Corneal Neovascularization/metabolism , Nitrogen Isotopes , Proteome/metabolism , Water-Electrolyte Balance , Animals , Blood-Retinal Barrier/pathology , Blood-Retinal Barrier/physiopathology , Cornea/metabolism , Cornea/pathology , Cornea/physiopathology , Corneal Neovascularization/pathology , Corneal Neovascularization/physiopathology , Female , Mice , Nitrogen Isotopes/pharmacokinetics , Nitrogen Isotopes/pharmacology , Permeability
17.
Sci Rep ; 8(1): 505, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323190

ABSTRACT

Angiopoietin-1 (Ang1) and Angiopoietin-2 (Ang2) are ligands for Tie2, an endothelial-specific receptor tyrosine kinase that is an essential regulator of angiogenesis. Here we report the identification, via expression cloning, of thrombomodulin (TM) as another receptor for Ang1 and Ang2. Thrombomodulin is an endothelial cell surface molecule that plays an essential role as a coagulation inhibitor via its function as a cofactor in the thrombin-mediated activation of protein C, an anticoagulant protein, as well as thrombin-activatable fibrinolysis inhibitor (TAFI). Ang1 and Ang2 inhibited the thrombin/TM-mediated generation of activated protein C and TAFI in cultured endothelial cells, and inhibited the binding of thrombin to TM in vitro. Ang2 appears to bind TM with higher affinity than Ang1 and is a more potent inhibitor of TM function. Consistent with a potential role for angiopoietins in coagulation, administration of thrombin to mice rapidly increased plasma Ang1 levels, presumably reflecting release from activated platelets (previously shown to contain high levels of Ang1). In addition, Ang1 levels were significantly elevated in plasma prepared from wound blood, suggesting that Ang1 is released from activated platelets at sites of vessel injury. Our results imply a previously undescribed role for angiopoietins in the regulation of hemostasis.


Subject(s)
Angiopoietin-1/metabolism , Angiopoietin-2/metabolism , Thrombin/metabolism , Thrombomodulin/metabolism , Angiopoietin-1/blood , Angiopoietin-1/genetics , Angiopoietin-2/genetics , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , COS Cells , Carboxypeptidase B2/metabolism , Chlorocebus aethiops , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Platelet Factor 4/metabolism , Protein Binding , Protein C/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptor, TIE-2/antagonists & inhibitors , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Thrombin/chemistry , Thrombin/pharmacology , Thrombomodulin/genetics
18.
Proc Natl Acad Sci U S A ; 115(6): 1298-1303, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29358379

ABSTRACT

The angiopoietin (ANGPT)-TIE2/TEK signaling pathway is essential for blood and lymphatic vascular homeostasis. ANGPT1 is a potent TIE2 activator, whereas ANGPT2 functions as a context-dependent agonist/antagonist. In disease, ANGPT2-mediated inhibition of TIE2 in blood vessels is linked to vascular leak, inflammation, and metastasis. Using conditional knockout studies in mice, we show TIE2 is predominantly activated by ANGPT1 in the cardiovascular system and by ANGPT2 in the lymphatic vasculature. Mechanisms underlying opposing actions of ANGPT2 in blood vs. lymphatic endothelium are poorly understood. Here we show the endothelial-specific phosphatase VEPTP (vascular endothelial protein tyrosine phosphatase) determines TIE2 response to ANGPT2. VEPTP is absent from lymphatic endothelium in mouse in vivo, permitting ANGPT2/TIE2-mediated lymphangiogenesis. Inhibition of VEPTP converts ANGPT2 into a potent TIE2 activator in blood endothelium. Our data support a model whereby VEPTP functions as a rheostat to modulate ANGPT2 ligand effect on TIE2.


Subject(s)
Angiopoietin-2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Angiopoietin-2/genetics , Animals , Endothelium, Lymphatic/embryology , Endothelium, Lymphatic/metabolism , Endothelium, Vascular/metabolism , HEK293 Cells , Humans , Mice, Knockout , Mice, Transgenic , Receptor, TIE-2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Signal Transduction
19.
J Am Soc Nephrol ; 29(4): 1097-1107, 2018 04.
Article in English | MEDLINE | ID: mdl-29237738

ABSTRACT

Urinary concentrating ability is central to mammalian water balance and depends on a medullary osmotic gradient generated by a countercurrent multiplication mechanism. Medullary hyperosmolarity is protected from washout by countercurrent exchange and efficient removal of interstitial fluid resorbed from the loop of Henle and collecting ducts. In most tissues, lymphatic vessels drain excess interstitial fluid back to the venous circulation. However, the renal medulla is devoid of classic lymphatics. Studies have suggested that the fenestrated ascending vasa recta (AVRs) drain the interstitial fluid in this location, but this function has not been conclusively shown. We report that late gestational deletion of the angiopoietin receptor endothelial tyrosine kinase 2 (Tie2) or both angiopoietin-1 and angiopoietin-2 prevents AVR formation in mice. The absence of AVR associated with rapid accumulation of fluid and cysts in the medullary interstitium, loss of medullary vascular bundles, and decreased urine concentrating ability. In transgenic reporter mice with normal angiopoietin-Tie2 signaling, medullary AVR exhibited an unusual hybrid endothelial phenotype, expressing lymphatic markers (prospero homeobox protein 1 and vascular endothelial growth factor receptor 3) as well as blood endothelial markers (CD34, endomucin, platelet endothelial cell adhesion molecule 1, and plasmalemmal vesicle-associated protein). Taken together, our data redefine the AVRs as Tie2 signaling-dependent specialized hybrid vessels and provide genetic evidence of the critical role of AVR in the countercurrent exchange mechanism and the structural integrity of the renal medulla.


Subject(s)
Angiopoietin-1/physiology , Angiopoietin-2/physiology , Extracellular Fluid/metabolism , Kidney Concentrating Ability/physiology , Kidney Medulla/blood supply , Receptor, TIE-2/physiology , Angiopoietin-1/deficiency , Angiopoietin-1/genetics , Angiopoietin-2/deficiency , Angiopoietin-2/genetics , Animals , Body Patterning , Cell Lineage , Endothelium, Vascular , Genes, Reporter , Gestational Age , Homeodomain Proteins/analysis , Kidney Diseases, Cystic/genetics , Kidney Medulla/embryology , Kidney Medulla/physiology , Mice , Mice, Knockout , Mice, Transgenic , Myofibroblasts/pathology , Osmosis , Receptor, TIE-2/deficiency , Receptor, TIE-2/genetics , Renal Circulation , Signal Transduction , Tumor Suppressor Proteins/analysis , Vascular Endothelial Growth Factor Receptor-3/analysis
20.
J Clin Invest ; 127(12): 4421-4436, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29106382

ABSTRACT

Primary congenital glaucoma (PCG) is a leading cause of blindness in children worldwide and is caused by developmental defects in 2 aqueous humor outflow structures, Schlemm's canal (SC) and the trabecular meshwork. We previously identified loss-of-function mutations in the angiopoietin (ANGPT) receptor TEK in families with PCG and showed that ANGPT/TEK signaling is essential for SC development. Here, we describe roles for the major ANGPT ligands in the development of the aqueous outflow pathway. We determined that ANGPT1 is essential for SC development, and that Angpt1-knockout mice form a severely hypomorphic canal with elevated intraocular pressure. By contrast, ANGPT2 was dispensable, although mice deficient in both Angpt1 and Angpt2 completely lacked SC, indicating that ANGPT2 compensates for the loss of ANGPT1. In addition, we identified 3 human subjects with rare ANGPT1 variants within an international cohort of 284 PCG patients. Loss of function in 2 of the 3 patient alleles was observed by functional analysis of ANGPT1 variants in a combined in silico, in vitro, and in vivo approach, supporting a causative role for ANGPT1 in disease. By linking ANGPT1 with PCG, these results highlight the importance of ANGPT/TEK signaling in glaucoma pathogenesis and identify a candidate target for therapeutic development.


Subject(s)
Angiopoietin-1/metabolism , Lymphatic Vessels/embryology , Signal Transduction , Angiopoietin-1/genetics , Animals , Cohort Studies , Female , Genetic Diseases, Inborn/embryology , Genetic Diseases, Inborn/genetics , Glaucoma/embryology , Glaucoma/genetics , Humans , Lymphatic Vessels/pathology , Male , Mice , Mice, Knockout , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Trabecular Meshwork/embryology , Trabecular Meshwork/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...