Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sustain Sci ; 18(1): 371-388, 2023.
Article in English | MEDLINE | ID: mdl-36090767

ABSTRACT

The development of detailed national pathways towards sustainable food and land systems aims to provide stakeholders with clarity on how long-term goals could be achieved and to reduce roadblocks in the way to making commitments. However, the inability to perfectly capture the relationships between all variables in a system and the unknown probability of future values (deep uncertainty) makes it very difficult to design scenarios that account for the full breadth of system uncertainty. Here we use scenario discovery to systematically explore the effect of different parameter ranges on model outputs, and design resilient pathways to sustainability in which multiple target achievement requires a broad portfolio of solutions. We use a model of the Australian food and land system, the FABLE (Food, Agriculture, Biodiversity, Land-use, Energy) Calculator, to investigate conditions for achieving a sustainable Australian food and land system under scenarios based on the Shared Socioeconomic Pathways (SSP) 1, 2, and 3 narratives. Here we link the FABLE Calculator with a Monte Carlo simulation tool to explore hundreds of thousands of scenarios. This allows us to identify the ranges of systemic drivers that achieve multiple sustainability targets around diets, net forest growth, agricultural water consumption, greenhouse gas emissions, biodiversity conservation, and exports by 2050. Our results show that livestock productivity and density, afforestation, and dietary change are powerful influencers for sustainability target achievement. Around 10% of the SSP1 scenarios could achieve all modelled sustainability targets. However, practically none of the scenarios based on SSP2 and SSP3 narratives could achieve such targets. The results suggest that there are options to achieve a more sustainable and resilient Australian food and land-use system with better socio-economic and environmental outcomes than under current trends. However, its achievement requires significant structural changes and coordinated interventions in several components of the domestic food and land system to increase its resilience and environmental and socio-economic performance. Understanding the bounds within which this system needs to change and operate to achieve sustainability targets will enable greater clarity and flexibility during discussions between decision-makers and stakeholders. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-022-01202-2.

2.
PLoS One ; 12(10): e0186282, 2017.
Article in English | MEDLINE | ID: mdl-29036207

ABSTRACT

The American Southwest has experienced a series of severe droughts interspersed with strong wet episodes over the past decades, prompting questions about future climate patterns and potential intensification of weather disruptions under warming conditions. Here we show that interannual hydroclimatic variability in this region has displayed a significant level of non-stationarity over the past millennium. Our tree ring-based analysis of past drought indicates that the Little Ice Age (LIA) experienced high interannual hydroclimatic variability, similar to projections for the 21st century. This is contrary to the Medieval Climate Anomaly (MCA), which had reduced variability and therefore may be misleading as an analog for 21st century warming, notwithstanding its warm (and arid) conditions. Given past non-stationarity, and particularly erratic LIA, a 'warm LIA' climate scenario for the coming century that combines high precipitation variability (similar to LIA conditions) with warm and dry conditions (similar to MCA conditions) represents a plausible situation that is supported by recent climate simulations. Our comparison of tree ring-based drought analysis and records from the tropical Pacific Ocean suggests that changing variability in El Niño Southern Oscillation (ENSO) explains much of the contrasting variances between the MCA and LIA conditions across the American Southwest. Greater ENSO variability for the 21st century could be induced by a decrease in meridional sea surface temperature gradient caused by increased greenhouse gas concentration, as shown by several recent climate modeling experiments. Overall, these results coupled with the paleo-record suggests that using the erratic LIA conditions as benchmarks for past hydroclimatic variability can be useful for developing future water-resource management and drought and flood hazard mitigation strategies in the Southwest.


Subject(s)
Climate Change , Models, Theoretical , Water , Computer Simulation , Droughts , El Nino-Southern Oscillation , Forecasting , Fossils/anatomy & histology , Southwestern United States , Temperature , Trees/anatomy & histology , Trees/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...