Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Ther (Weinh) ; 6(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36733607

ABSTRACT

Dendritic cells (DCs) are prime targets for vaccination and immunotherapy. However, limited control over antigen presentation at a desired maturation status in these plastic materials remains a fundamental challenge in efficiently orchestrating a controlled immune response. DC-derived extracellular vesicles (EVs) can overcome some of these issues, but have significant production challenges. Herein, we employ a unique chemically-induced method for production of DC-derived extracellular blebs (DC-EBs) that overcome the barriers of DC and DC-derived EV vaccines. DC-EBs are molecular snapshots of DCs in time, cell-like particles with fixed stimulatory profiles for controlled immune signalling. DC-EBs were produced an order of magnitude more quickly and efficiently than conventional EVs and displayed stable structural integrity and antigen presentation compared to live DCs. Multi-omic analysis confirmed DC-EBs are majorly pure plasma membrane vesicles that are homogeneous at the single-vesicle level, critical for safe and effective vaccination. Immature vs. mature molecular profiles on DC-EBs exhibited molecularly modulated immune responses compared to live DCs, improving remission and survival of tumor-challenged mice via generation of antigen-specific T cells. For the first time, DC-EBs make their case for use in vaccines and for their potential in modulating other immune responses, potentially in combination with other immunotherapeutics.

2.
Cell Immunol ; 386: 104691, 2023 04.
Article in English | MEDLINE | ID: mdl-36822152

ABSTRACT

COVID-19 has caused significant morbidity and mortality worldwide but also accelerated the clinical use of emerging vaccine formulations. To address the current shortcomings in the prevention and treatment of SARS-CoV-2 infection, this study developed a novel vaccine platform that closely mimics dendritic cells (DCs) in antigen presentation and T-cell stimulation in a cell-free and tunable manner. Genetically engineered DCs that express the SARS-CoV-2 spike protein (S) were chemically converted into extracellular blebs (EBs). The resulting EBs elicited potentially protective humoral immunity in vivo, indicated by the production of antibodies that potently neutralized S-pseudotyped virus, presenting EBs as a promising and safe vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Dendritic Cells , Spike Glycoprotein, Coronavirus/genetics , Vaccination
3.
Adv Drug Deliv Rev ; 170: 1-25, 2021 03.
Article in English | MEDLINE | ID: mdl-33359141

ABSTRACT

Due to the high prevalence and long incubation periods often without symptoms, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions of individuals globally, causing the coronavirus disease 2019 (COVID-19) pandemic. Even with the recent approval of the anti-viral drug, remdesivir, and Emergency Use Authorization of monoclonal antibodies against S protein, bamlanivimab and casirimab/imdevimab, efficient and safe COVID-19 vaccines are still desperately demanded not only to prevent its spread but also to restore social and economic activities via generating mass immunization. Recent Emergency Use Authorization of Pfizer and BioNTech's mRNA vaccine may provide a pathway forward, but monitoring of long-term immunity is still required, and diverse candidates are still under development. As the knowledge of SARS-CoV-2 pathogenesis and interactions with the immune system continues to evolve, a variety of drug candidates are under investigation and in clinical trials. Potential vaccines and therapeutics against COVID-19 include repurposed drugs, monoclonal antibodies, antiviral and antigenic proteins, peptides, and genetically engineered viruses. This paper reviews the virology and immunology of SARS-CoV-2, alternative therapies for COVID-19 to vaccination, principles and design considerations in COVID-19 vaccine development, and the promises and roles of vaccine carriers in addressing the unique immunopathological challenges presented by the disease.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Drug Development/methods , SARS-CoV-2/drug effects , Animals , Antiviral Agents/immunology , COVID-19/immunology , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/immunology , Drug Development/trends , Humans , Immunization Programs/methods , Immunization Programs/trends , SARS-CoV-2/immunology
4.
Methods ; 177: 135-145, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31734187

ABSTRACT

Extracellular vesicles (EVs) have emerged as promising biologic and comprehensive therapies for precision medicine. Despite their potential demonstrated at the benchtop, few EV formulations have made it to the clinic due to challenges in regulatory compliant scalable production; including purity, homogeneity, and reproducibility. For translation of this technology, there is a strong need for novel production methods that can meet clinical production criteria. Initial research aimed to address these challenges by taking advantage of natural pathways to increase EV yields. Such "conventional" approaches moderately increased yields but produced inhomogeneous EVs. Additionally, as there are currently no standard methods for isolation, characterization, or quantification, isolated EVs were often impure, contaminated with proteins and other biomacromolecules, and highly diverse in function. The use of shear stress and extrusion methods for EV-like vesicle production has also been investigated. While these processes can produce large EV-like vesicle yields nearly immediately, the harsh processes still result in inhomogeneous loading, and still suffer from poor purity. Chemically-induced membrane blebbing is a promising alternative production method that has the potential to overcome the previously insurmountable barriers of these current methods. This technique produces pure, and well defined EV-like vesicles, termed extracellular blebs (EBs), in clinically relevant scales over the course of minutes to hours. Furthermore, blebbing agents act on the cell in a way which locks the current surface properties and contents, preventing change, allowing for homogeneous EB production, and further preventing post-production changes. EBs may provide a promising pathway for clinical translation of EV technology.


Subject(s)
Cell Membrane/drug effects , Dithiothreitol/pharmacology , Drug Delivery Systems/methods , Ethylmaleimide/pharmacology , Extracellular Vesicles/metabolism , Formaldehyde/pharmacology , Polymers/pharmacology , Bioengineering/methods , Cell Membrane/chemistry , Cell Membrane/metabolism , Centrifugation, Density Gradient , Drug Compounding/methods , Extracellular Vesicles/chemistry , Extracellular Vesicles/transplantation , Humans , Hydrogen-Ion Concentration , Precision Medicine/methods , Translational Research, Biomedical/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...