Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 152: 106417, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281440

ABSTRACT

Postoperative abdominal adhesions often occur after abdominal surgery; barrier membranes which mimic peritoneal tissue can be constructed to prevent abdominal adhesions. To this end, silk fibroin (SF) sheets were coated with polyvinyl alcohol (PVA) and agarose (AGA) at PVA:AGA ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 to create a composite anti-adhesive barrier and allow us to identify a suitable coating ratio. The membranes were characterized in terms of their molecular organization, structure, and morphology using Fourier transform Infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM), respectively. The physical and mechanical properties of the membranes and their biological performance (i.e., fibroblast proliferation and invasion) were tested in vitro. Each membrane showed both smooth and rough surface characteristics. Membranes coated with PVA:AGA at ratios of 100:0, 70:30, 50:50, and 30:70 exhibited more -OH and amide III moieties than those coated with 0:100 PVA:AGA, which consequently affected structural organization, degradation, and fibroblast viability. The 0:100 PVA:AGA-coated degraded the fastest. Barrier membranes coated with 100:0 and 70:30 PVA: AGA demonstrated reduced fibroblast proliferation and attachment. The membrane coated with 70:30 PVA:AGA exhibited a stable appearance, and did not curl under wet conditions. Therefore, SF sheets coated with 70:30 PVA:AGA show promise as anti-adhesive barrier membranes for further development.


Subject(s)
Amides , Fibroins , Spectroscopy, Fourier Transform Infrared , Membranes , Fibroblasts , Polyvinyl Alcohol , Sepharose
2.
Org Biomol Chem ; 22(6): 1254-1268, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38251273

ABSTRACT

High content of reactive oxygen species (ROS) in the human body leads to oxidative stress and serious health problems, such as cancer and cardiovascular or bone diseases. It is also one of the agents that cause collagen damage. Herein, detection of ROS, scavenging of formed carbon-centered radicals and inhibition of collagen fragmentation were performed in a single operation using newly synthesized profluorescent nitroxide PN1via a switch-on approach. Reassembly of acid soluble collagen (ASC) in the presence of hydroxyl and hydroperoxyl radicals, representatives of ROS, was monitored to study the efficiency of the PN1 probe. Self-assembly curves of collagen fibril solution were in accordance with differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) observations, and indicated that PN1 efficiently inhibited the collagen chain scission. In order to prevent the leakage of the probe in materials, a PN2 monomer was successfully incorporated with MMA to form a profluorescent copolymer probe. Furthermore, PN1 and PN2-MMA copolymer probes offered high sensitivity of detection of ROS in the presence of collagen fibrils with detection limits of 1.1 and 2.7 µM, respectively. The mechanism of ROS detection and inhibition of collagen degradation by profluorescent nitroxides was proposed.


Subject(s)
Nitrogen Oxides , Oxidative Stress , Humans , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology
3.
J Mech Behav Biomed Mater ; 143: 105933, 2023 07.
Article in English | MEDLINE | ID: mdl-37257314

ABSTRACT

Reinforced biphasic scaffolds were fabricated with based materials design of anatomical mimicking and evaluated to identify the certain application for maxillofacial surgery. The scaffolds created the polyvinyl alcohol (PVA) with a percentage of gelatin of 5% and were coated with polycaprolactone (PCL) that a different number of cycles 0, 1, 5, 10, and 15 cycles (PCL0, PCL1, PCL5, PCL10, and PCL15 were used to fabricate biphasic scaffolds via bubbling and freeze-thawing before reinforce with immersion coating techniques. The structure and morphology of the scaffolds were characterized and observed by a scanning electron microscope, a differential scanning calorimeter, and a thermogravimetric analyzer, respectively. The performance of the scaffolds was tested in terms of their swelling behavior, degradation, and mechanical properties. They were cultured with MC3T3E1 osteoblast cells and L929 fibroblast cells. The main biological performance of cell proliferation was analyzed, and protein synthesis, calcium synthesis, and alkaline phosphatase activity of the scaffolds were studied. Their morphology demonstrated fewer pores when coated with PCL. Mechanical strength of the modified scaffolds increased followed by the cycles of coating with PCL. The scaffolds with more cycle of PCL coating lower swelling and degradability than without PCL coating. They had more thermal stability than the scaffold without PCL coating. The scaffolds with PCL coating demonstrated better bio-functionality to activate cell response than without coating. Finally, the result exhibited that PCL10 provide a suitably reinforced biphasic scaffold with high promise for maxillofacial surgery.


Subject(s)
Gelatin , Tissue Scaffolds , Tissue Scaffolds/chemistry , Polyvinyl Alcohol , Biocompatible Materials , Polyesters/chemistry , In Vitro Techniques , Tissue Engineering/methods
4.
J Biomater Appl ; 36(5): 930-942, 2021 11.
Article in English | MEDLINE | ID: mdl-34152233

ABSTRACT

The fragility of silk fibroin film is a drawback to being used as a barrier membrane. Semi-resorbable barrier membranes maintain function longer than a resorbable membrane and no need to be removed. The study aimed to fabricate semi-resorbable membranes using silk fibroin with glycerol plasticizer (Group A), immobilized with fish collagen (Group B), and then characterized, in vitro biocompatibility tested, and compared with a commercial collagen membrane (Group C). Group B showed more roughness (0.2155 µm) than Group A (0.1424 µm). Group A was more hydrophilic (76.75° ± 3.07°) and more stiffness (28.93% ± 15.56%) than Group B (112.67° ± 1.94°, 42.10% ± 11.46%) and C (54.79% ± 13.44%) without significant difference. Group C had a significantly higher (p < 0.05) swelling degree and less degradation rate than others. Group A showed significantly highest (p < 0.05) cell proliferation. Group C showed more alkaline phosphatase activity than others but no significant difference in osteocalcin and Alizarin Red activity on day 21. The semi-resorbable membrane based on silk fibroin-glycerol possessed good physical and mechanical properties, and well-supported osteoblastic cell proliferation and differentiation.


Subject(s)
Bone Regeneration/drug effects , Collagen/chemistry , Fibroins/chemistry , Fibroins/pharmacology , Fishes , Glycerol/chemistry , Glycerol/pharmacology , Silk , Animals , Biocompatible Materials/chemistry , Cell Differentiation , Cell Line , Cell Proliferation , Osteocalcin
SELECTION OF CITATIONS
SEARCH DETAIL
...