Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36661818

ABSTRACT

The use of bioactive molecules derived from medicinal plants in wound healing has recently attracted considerable attention in both research and public interest. In this work, we demonstrated the first attempt to incorporate the extract from Thai red onion skins in hydrogel patches intended for transdermal delivery. The red onion skin extract (ROSE) was first prepared and evaluated for cytotoxicity by MTT assay with both L929 and human dermal fibroblast cells. Hydrogel patches with porous microstructure and high water content were fabricated from polyvinyl alcohol (PVA) by electron beam irradiation and characterized for their physical, mechanical, morphological, and cytocompatible properties prior to the loading of ROSE. After decontamination by electron beam irradiation, the in vitro release profile exhibited the burst release of extract from ROSE-coated hydrogel patches within 5 h, followed by the sustained release up to 48 h. Finally, evaluation of skin permeation using Franz cell setup with a newborn pig skin model showed that the permeation of ROSE from the hydrogel patch increased with time and reached the maximum of 262 µg/cm2, which was well below the cytotoxicity threshold, at 24 h. These results demonstrated that our ROSE-coated hydrogel patches could potentially be used in transdermal delivery.

2.
Pharmaceutics ; 14(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35631666

ABSTRACT

The first line therapy of patients with Parkinson's disease, a neurodegenerative disorder caused by the degeneration of dopaminergic neurons, is levodopa (L-dopa) given orally. Recently, the presence of natural L-dopa in the seed of Mucuna pruriens, a tropical legume in the Fabaceae family, was reported and it showed superior efficiency compared with synthetic L-dopa. Therefore, this study aimed to examine the phytochemical compounds, particularly for natural L-dopa, in M. pruriens seed extract and subsequently prepare a nanogel containing the extract prior to incorporation into a jelly formulation for use as a functional food in elderly patients with Parkinson's disease. The results show that M. pruriens seed extract contains phenolic compounds, flavonoids, tannins, alkaloids, terpenoids, and saponins. The quantitative analysis performed by the HPLC method revealed that spray-dried M. pruriens seed extract contained 5.59 ± 0.21% L-dopa. M. pruriens seed extract possesses a ferric-reducing antioxidant power and shows free-radical scavenging activity, determined by DPPH and ABTS methods, suggesting a distinctive antioxidant ability of the extract. M. pruriens seed extract at 10 ng/mL did not show cytotoxicity against a neuronal cell line (SH-SY5Y cells), kidney cells (HEK293 cells), or Caco-2 cells. Nanogel of M. pruriens seed extract prepared by ionic gelation had the hydrodynamic diameter, polydispersity index and zeta potential value of 384.53 ± 11.24 nm, 0.38 ± 0.05, and -11.23 ± 1.15 mV, respectively. The transepithelial transport of L-dopa in M. pruriens seed-extract nanogel through Caco-2 cells was measured. Nanogel containing M. pruriens seed extract at the concentration of 10 ng/mL exhibited neuroprotective activity. A jelly formulation containing M. pruriens seed-extract nanogel was successfully developed. The prepared jelly exhibited the acceptable physical and microbiological stabilities upon 6 months of the stability test. The half-life of natural L-dopa in jelly were 3.2, 0.9, and 0.6 years for storage conditions at 4, 30, and 40 °C, respectively, indicating the thermal degradation of natural L-dopa. The prepared jelly containing natural L-dopa from M. pruriens seed extract with the prominent antioxidant activity is a promising option for elderly patients suffering from Parkinson's disease.

3.
Polymers (Basel) ; 13(20)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34685337

ABSTRACT

A hydrogel scaffold is a localized drug delivery system that can maintain the therapeutic level of drug concentration at the tumor site. In this study, the biopolymer hydrogel scaffold encapsulating doxorubicin was fabricated from gelatin, sodium carboxymethyl cellulose, and gelatin/sodium carboxymethyl cellulose mixture using a lyophilization technique. The effects of a crosslinker on scaffold morphology and pore size were determined using scanning electron microscopy. The encapsulation efficiency and the release profile of doxorubicin from the hydrogel scaffolds were determined using UV-Vis spectrophotometry. The anti-proliferative effect of the scaffolds against the lung cancer cell line was investigated using an MTT assay. The results showed that scaffolds made from different types of natural polymer had different pore configurations and pore sizes. All scaffolds had high encapsulation efficiency and drug-controlled release profiles. The viability and proliferation of A549 cells, treated with gelatin, gelatin/SCMC, and SCMC scaffolds containing doxorubicin significantly decreased compared with control. These hydrogel scaffolds might provide a promising approach for developing a superior localized drug delivery system to kill lung cancer cells.

4.
Saudi Pharm J ; 28(12): 1538-1547, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33424247

ABSTRACT

The aim of this study was to develop hydrogel loaded with capsicum extract nanoparticles and wax gourd extract for transdermal delivery of capsaicin. The addition of wax gourd extract was supposed to reduce cytotoxicity of capsaicin in capsicum extract against HaCaT keratinocyte cell line. Capsicum extract nanoparticles were prepared by solvent displacement method using hyaluronic acid as a stabilizer. The physical and chemical stability of capsicum extract nanoparticles were investigated by dynamic light scattering technique and UV-Visible spectrophotometry, respectively. Hydrogel loaded with capsicum extract nanoparticles and wax gourd fruit extract was then formulated by using Carbopol 940® as a gelling agent for transdermal delivery. The skin permeability of capsaicin from the hydrogel was evaluated by Franz diffusion cell approach. The cytotoxicity reduction of capsicum extract nanoparticles and capsicum extract nanoparticles by mixing with wax gourd extract was determined by MTT assay The results showed that capsicum extract nanoparticles exhibited an average diameter of 168.4 ± 5.3 nm with a polydispersity index and zeta potential value of 0.26 ± 0.01 and -45.7 ± 7.1 mV, respectively. After two month-storage, particle size, polydispersity index, and zeta potential values of capsicum extract nanoparticles stored at 4° C, 30° C, and 45 °C did not significantly change. The capsaicin content decreased to 78%, 71%, and 72% when stored at 4 °C, 30 °C, and 45 °C for three months, respectively. The pH values of hydrogel containing capsicum extract nanoparticles were found to be in the range of 5.58-6.05 indicating good stability. The hydrogel exhibited a pseudoplastic character. The rate of permeation flux of capsaicin from hydrogel was 7.96 µg/cm2/h. A significant increase in cell viability was observed when the cells were incubated with capsicum extract nanoparticles mixed with wax gourd, compared to capsicum extract nanoparticles alone. The wax gourd extract in the hydrogel protected HaCaT cells from capsaicin cytotoxicity, thus may provide a new approach for delivery of capsaicin to reduce cytotoxicity to skin cells.

5.
Drug Dev Ind Pharm ; 43(7): 1082-1092, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28161991

ABSTRACT

This study was aimed to examine the nanoparticle formation from redispersion of binary and ternary solid dispersions. Binary systems are composed of various ratios of glibenclamide (GBM) and polyvinylpyrrolidone K30 (PVP-K30), whereas a constant amount at 2.5%w/w of a surfactant, sodium lauryl sulfate (SLS) or Gelucire44/14 (GLC), was added to create ternary systems. GBM nanoparticles were collected after the systems were dispersed in water for 15 min. The obtained nanoparticles were characterized for size distribution, crystallinity, thermal behavior, molecular structure, and dissolution properties. The results indicated that GBM nanoparticles could be formed when the drug content of the systems was lower than 30%w/w in binary systems and ternary systems containing SLS. The particle size ranged from 200 to 500 nm in diameter with narrow size distribution. The particle size was increased with increasing drug content in the systems. The obtained nanoparticles were spherical and showed the amorphous state. Furthermore, because of being amorphous form and reduced particle size, the dissolution of the generated nanoparticles was markedly improved compared with the GBM powder. In contrast, all the ternary solid dispersions prepared with GLC anomalously provided the crystalline particles with the size ranging over 5 µm and irregular shape. Interestingly, this was irrelevant to the drug content in the systems. These results indicated the ability of GLC to destabilize the polymer network surrounding the particles during particle precipitation. Therefore, this study suggested that drug content, quantity, and type of surfactant incorporated in solid dispersions drastically affected the physicochemical properties of the precipitated particles.


Subject(s)
Glyburide/chemistry , Nanoparticles/chemistry , Povidone/chemistry , Surface-Active Agents/chemistry , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Drug Carriers/chemistry , Drug Stability , Sodium Dodecyl Sulfate , Solubility
6.
Curr Drug Deliv ; 13(1): 95-104, 2016.
Article in English | MEDLINE | ID: mdl-26338259

ABSTRACT

Poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) have been widely used as drug delivery systems for both small molecules and macromolecules. However, the colloidal stability problem remains unsolved. This study aims to investigate the possibility of using sodium carboxymethyl cellulose (SCMC) as a stabilizing agent of PLGA NPs. In this study, PLGA NPs were fabricated using various concentrations of SCMC (0.01, 0.1 and 0.5% w/v) by solvent displacement method. SCMC coated NPs were characterized using DLS, FTIR, DSC, colorimetric method. Particle size, polydispersity index, zeta potential values and SCMC adsorption increased with SCMC concentration. FTIR spectra, DSC thermograms and results of colorimetry suggested the interaction of SCMC and PLGA NPs. The stability of SCMC coated PLGA NPs was observed during the storage of three weeks in water. The stability of SCMC coated NPs in serum was also evaluated. Cell viability study revealed that there was no toxicity increased when SCMC was used as a stabilizing agent up to a concentration of 0.1% w/v. SCMC coated PLGA NPs bound A549 cells in a time dependent manner and with a greater extent than uncoated PLGA NPs. In conclusion, SCMC can be used to stabilize PLGA NPs by adsorbing on the surface of NPs.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Excipients/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , A549 Cells , Adsorption , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Stability , Humans , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer
7.
Drug Dev Ind Pharm ; 42(1): 70-79, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25835067

ABSTRACT

Modification of polymorphic forms of poorly water-soluble drugs is one way to achieve the desirable properties. In this study, glibenclamide (GBM) particles with different polymorphic forms, including a new metastable form, were obtained from redispersion of ternary solid dispersion systems. The ternary solid dispersion systems, consisting of GBM, polyvinylpyrrolidone-K30 (PVP-K30) and sodium lauryl sulfate (SLS), were prepared by solvent evaporation method and subsequently redispersed in deionized water. The precipitated drug particles were then collected at a given time period. The drug particles with different polymorphic forms could be achieved depending on the polymer/surfactant ratio. Amorphous drug nanoparticles could be obtained by using a high polymer/surfactant ratio, whereas two different crystalline forms were obtained from the systems containing low polymer/surfactant ratios. Interestingly, a new metastable form IV of GBM with improved dissolution behavior could be obtained from the system of GBM:PVP-K30:SLS with the weight ratio of 2:2:4. This new polymorphic form IV of GBM was confirmed by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffractometry (PXRD) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy. The molecular arrangement of the new polymorphic form IV of GBM was proposed. The GBM particles with polymorphic form IV also showed an improved dissolution behavior. In addition, it was found that the formation of the new polymorphic form IV of GBM by this process was reproducible.


Subject(s)
Drug Carriers/chemistry , Drug Compounding , Glyburide/chemistry , Povidone/chemistry , Sodium Dodecyl Sulfate/chemistry , Calorimetry, Differential Scanning , Crystallization , Glyburide/administration & dosage , Magnetic Resonance Spectroscopy , Nanoparticles/chemistry , Solubility , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...