Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092210

ABSTRACT

Flexible thermoplastic elastomers (TPE) were prepared for fused deposition modeling (FDM) or 3D printing. These materials can be used for medical purposes such as disposable soft splints and other flexible devices. Blends of 50% epoxidized natural rubber (ENR-50) and block rubber (Standard Thai Rubber 5L (STR5L)) with polycaprolactone (PCL) were produced and compared. The purpose of this study was to investigate the properties of natural rubber (NR) and PCL in simple blends with PCL contents of 40%, 50%, and 60% by weight (except at 75% for morphology study) in the base mixture (NR/PCL). The significant flow factors for FDM materials, such as melting temperature (Tm) and melt flow rate (MFR), were observed by differential scanning calorimetry (DSC) and via the melt flow index (MFI). In addition, the following mechanical properties were also determined: tensile strength, compression set, and hardness. The results from DSC showed that the melting temperature changed slightly (1-2 °C) with amount of PCL used, and there was a suspicious point in the 50/50 blends with both types of rubber. The lowest melting enthalpy of both blends was found at the 50/50 blended composition. The MFI results showed that PCL significantly affected the melt flow rate of both blends. The ENR-50/PCL blend flowed better than the STR5L/PCL blend. The conclusion was that this was due to the morphology of its phase structure having better uniformity than that of the STR5L/PCL blend. In compression set testing or measuring shape recovery, rubber directly influenced the recovery in all blends. The ENR-50/PCL blend had less recovery than the STR5L/PCL blend, probably due to the functional effects of epoxide groups and polarity mismatch. The hard phase PCL significantly affected the hardness of samples but improved shape recovery of the material. The ENR-50/PCL blend had better tensile properties than the STR5L/PCL blend. The elongation at break of both blends improved with a high rubber content. Hence, the ENR-50/PCL blend was superior to STR5L/PCL for printing purposes due to its better miscibility, uniformity, and flow, which are the keys to success for optimizing the fused deposition modeling conditions as well as the overall mechanical properties of products. Most blends in this study were only slightly different, but the 50/50 blend of ENR-50/PCL seemed to be near optimal for 3D printing.

2.
Polymers (Basel) ; 12(9)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906718

ABSTRACT

Impact force remains the primary cause of foot injury and general discomfort with regard to footwear. The footwear industry traditionally relies on modified elastomers (including natural rubber) whose properties can be physically adjusted by varying the constituents in the rubber formulations. This work aims to investigate the effect of filler/plasticizer fractions on shock attenuation of natural rubber soles. The statistical response surface method (RSM) was used to optimize the loading of natural rubber, fillers (carbon black and china clay) and a plasticizer (paraffinic oil). A novel predictive equation addressing the effects of additives on the physical and mechanical properties of the shoe sole was successfully created using the RSM. Our results demonstrate how the concentrations of these components regulate final properties, such as impact force absorption and hardness, in the commercial manufacture of shoe soles. While a higher loading level of plasticizer promotes reductions in hardness and impact force, as well as energy dissipation, in these modified elastomers, these properties were improved by increasing the filler content.

SELECTION OF CITATIONS
SEARCH DETAIL
...