Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 15(2): 454-62, 2013 Feb.
Article in English | MEDLINE | ID: mdl-25208710

ABSTRACT

As a tool to evaluate the characteristics of aerosol nano-particles, a high-volume air sampler for the collection of nano-particles was developed based on the inertial filter technology. Instead of the webbed fiber geometry of the existing inertial filter, wire mesh screens alternately layered using spacing sheets with circular holes aligned to provide multi-circular nozzles were newly devised and the separation performance of the filter was investigated experimentally. The separation performance was evaluated for a single-nozzle inertial filter at different filtration velocities. A webbed stainless steel fiber mat attached on the inlet surface of the developed inertial filter was discussed as a pre-separator suppressing the bouncing of particles on meshes. The separation performance of a triple-nozzle inertial filter was also discussed to investigate the influence of scale-up on the separation performance of a multi-nozzle inertial filter. The influence of particle loading on the pressure drop and separation performance was discussed. A supplemental inlet for the nano-particle collection applied to an existing portable high-volume air sampler was devised and the consistency with other types of existing samplers was discussed based on the sampling of ambient particles. The layered-mesh inertial filter with a webbed stainless steel fiber mat as a pre-separator showed good performance in the separation of particles with a d p50 ranging from 150 to 190 nm keeping the influence of loaded particles small. The developed layered-mesh inertial filter was successfully applied to the collection of particles at a d p50∼ 190 nm that was consistent with the results from existing samplers.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Nanoparticles/analysis , Environmental Monitoring/methods , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...