Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(1): e55139, 2013.
Article in English | MEDLINE | ID: mdl-23383084

ABSTRACT

Pyruvate carboxylase (PC) is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse. RT-PCR analysis performed with cDNA prepared from human liver and islets showed that the distal promoter, but not the proximal promoter, of the human PC gene is active in pancreatic beta cells. A 1108 bp fragment of the human PC distal promoter was cloned and analyzed. It contains no TATA box but possesses two CCAAT boxes, and other putative transcription factor binding sites, similar to those of the distal promoter of rat PC gene. To localize the positive regulatory region in the human PC distal promoter, 5'-truncated and the 25-bp and 15-bp internal deletion mutants of the human PC distal promoter were generated and used in transient transfections in INS-1 832/13 insulinoma and HEK293T (kidney) cell lines. The results indicated that positions -340 to -315 of the human PC distal promoter serve as (an) activator element(s) for cell-specific transcription factor, while the CCAAT box at -71/-67, a binding site for nuclear factor Y (NF-Y), as well as a GC box at -54/-39 of the human PC distal promoter act as activator sequences for basal transcription.


Subject(s)
Insulin-Secreting Cells/enzymology , Promoter Regions, Genetic , Pyruvate Carboxylase/genetics , Animals , Base Sequence , Cloning, Molecular , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Organ Specificity , Rats , Sequence Alignment , Transcription, Genetic/genetics
2.
Biochim Biophys Acta ; 1809(10): 541-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21745612

ABSTRACT

Pyruvate carboxylase (PC) catalyzes the first committed step in gluconeogenesis in the liver. The murine PC gene possesses two promoters, the proximal (P1) and the distal (P2) which mediate production of distinct tissue-specific mRNA isoforms. By comparing the luciferase activities of 5'-nested deletions of the P1-promoter in the AML12 mouse hepatocyte cell line, the critical cis-acting elements required for maintaining basal transcription were located within the 166 nucleotides proximal to the transcription start site. Three GC boxes were identified within this region and shown by gel shift and ChIP assays to bind Sp1/Sp3. Over-expression of Sp1/Sp3 in AML12 and NIH3T3 cells increased P1-promoter activity, with Sp1 being a stronger activator than Sp3. Mutation of any one of the three GC boxes dramatically reduced basal promoter activity by 60-80% suggesting that all three boxes are equally strong regulatory elements. In AML12 cells, over-expression of Sp1/Sp3 restored the transcriptional activity of GC1 and GC2 but not GC3 mutants to levels similar to that of the WT construct, suggesting that GC3 is particularly critical for Sp1/Sp3-mediated induction. In NIH3T3 cells, however, the three boxes were equally important, indicating that the GC boxes differentially contribute to transcriptional regulation of the P1-promoter in the two cell lines. Mutants harboring two disrupted GC boxes showed a further decrease in promoter activity similar to the triple GC box mutant. Neither Sp1 nor Sp3 was able to fully restore the promoter activities of these mutants to that the WT level.


Subject(s)
Hepatocytes/metabolism , Promoter Regions, Genetic , Pyruvate Carboxylase/genetics , Animals , Base Sequence , Chromatin Immunoprecipitation , Fibroblasts/metabolism , Mice , Molecular Sequence Data , Mutation , NIH 3T3 Cells , Protein Isoforms , RNA, Messenger/metabolism , Sp1 Transcription Factor/metabolism , Sp3 Transcription Factor/metabolism
3.
J Biol Chem ; 286(21): 18383-96, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21454710

ABSTRACT

Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80-90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60-75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20-30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. ß-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.


Subject(s)
ATP Citrate (pro-S)-Lyase/metabolism , Acetoacetates/metabolism , Glucose/metabolism , Islets of Langerhans/enzymology , Pyruvate Carboxylase/metabolism , Pyruvic Acid/metabolism , Animals , Cell Line, Tumor , Glucose/pharmacology , Humans , Mice , Rats , Rats, Sprague-Dawley , Species Specificity , Sweetening Agents/metabolism , Sweetening Agents/pharmacology
4.
Biochem Biophys Res Commun ; 393(4): 714-9, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20171190

ABSTRACT

Pyruvate carboxylase (PC) catalyzes the first committed step in gluconeogenesis. Here we investigated the effect of various hormones including cAMP, dexamethasone and insulin on the abundance of PC mRNA in the human hepatocyte cell line, HepG2. Treatment of HepG2 cells with 1 microM of glucagon increased the expression of PC mRNA threefold within 72 h. Treatment with 1mM 8-Br-cAMP caused the abundance of PC mRNA to increase by 2-3-fold by 48 h, peak at fourfold at 72 h, and remain unchanged to 96 h. This is in contrast to phosphoenolpyruvate carboxykinase (PEPCK) for which expression was decreased after 72 h, suggesting a distinct difference in the control of these two enzymes in the long term. Dexamethasone or insulin alone did not affect the abundance of PC mRNA whereas treatment of HepG2 cells with the combination of 1mM 8-Br-cAMP and 0.5 microM dexamethasone further increased the abundance of PC mRNA, suggesting the predominant role of 8-Br-cAMP over dexamethasone. Transient transfection of the luciferase reporter construct driven by a 1.95 kbp 5'-flanking sequence of the mouse PC gene and a plasmid encoding the human cAMP-responsive element binding protein increased luciferase reporter activity to 7-fold similar to that observed with a PEPCK promoter-luciferase reporter construct. Deletion of the 5'-flanking region of the PC gene to 781 bp resulted in the complete loss of CREB-mediated induction of reporter gene, suggesting the presence of the cAMP-responsive unit is located between 1.95 kbp and 781 bp upstream of the mouse PC gene. Electrophoretic mobility shifted and chromatin immunoprecipitation assays demonstrated that CREB bind to -1639/-1631 CRE of mouse PC gene in vitro and in vivo, respectively.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP/metabolism , Gene Expression Regulation, Enzymologic , Pyruvate Carboxylase/genetics , Response Elements , Animals , Base Sequence , Cell Line , Cyclic AMP/pharmacology , Dexamethasone/pharmacology , Electrophoretic Mobility Shift Assay , Glucagon/pharmacology , Humans , Insulin/pharmacology , Mice , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...