Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(7): 075004, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068127

ABSTRACT

Non-invasive thermal noise calibration of both torsional and flexural eigenmodes is performed on numerous cantilevers of 10 different types. We show that for all tipless and short-tipped cantilevers, the ratio of torsional to flexural mode stiffness is given by the ratio of their resonant frequency times a constant, unique to that cantilever type. By determining this constant, we enable a calibration of the torsional eigenmode, starting from a calibration of the flexural eigenmode. Our results are well motivated from beam theory, and we verify them with finite element simulation.

2.
Soft Matter ; 14(19): 3998-4006, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29740651

ABSTRACT

We perform a comparative study of dynamic force measurements using an Atomic Force Microscope (AFM) on the same soft polymer blend samples in both air and liquid environments. Our quantitative analysis starts with calibration of the same cantilever in both environments. Intermodulation AFM (ImAFM) is used to measure dynamic force quadratures on the same sample. We validate the accuracy of the reconstructed dynamic force quadratures by numerical simulation of a realistic model of the cantilever in liquid. In spite of the very low quality factor of this resonance, we find excellent agreement between experiment and simulation. A recently developed moving surface model explains the measured force quadrature curves on the soft polymer, in both air and liquid.

3.
Phys Chem Chem Phys ; 19(35): 23642-23657, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28589979

ABSTRACT

Surface science, which spans the fields of chemistry, physics, biology and materials science, requires information to be obtained on the local properties and property variations across a surface. This has resulted in the development of different scanning probe methods that allow the measurement of local chemical composition and local electrical and mechanical properties. These techniques have led to rapid advancement in fundamental science with applications in areas such as composite materials, corrosion protection and wear resistance. In this perspective article, we focussed on the branch of scanning probe methods that allows the determination of surface nanomechanical properties. We discussed some different AFM-based modes that were used for these measurements and provided illustrative examples of the type of information that could be obtained. We also discussed some of the difficulties encountered during such studies.

4.
Nat Commun ; 7: 13836, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27958267

ABSTRACT

Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl-Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution.

5.
Rev Sci Instrum ; 87(9): 093711, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782587

ABSTRACT

Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This calibration is performed without reference to a global standard, hindering the robust comparison of force measurements reported by different laboratories. Here, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others-standardising AFM force measurements-and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website where users upload currently available data. A proof-of-principle demonstration of this initiative is presented using measured data from five independent laboratories across three countries, which also allows for an assessment of current calibration.

SELECTION OF CITATIONS
SEARCH DETAIL
...