Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Sci ; 14(43): 12283-12291, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37969596

ABSTRACT

Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.

2.
J Am Chem Soc ; 145(40): 22213-22221, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37751528

ABSTRACT

Carbonate formation presents a major challenge to energy storage applications based on low-temperature CO2 electrolysis and recyclable metal-air batteries. While direct electrochemical oxidation of (bi)carbonate represents a straightforward route for carbonate management, knowledge of the feasibility and mechanisms of direct oxidation is presently lacking. Herein, we report the isolation and characterization of the bis(triphenylphosphine)iminium salts of bicarbonate and peroxybicarbonate, thus enabling the examination of their oxidation chemistry. Infrared spectroelectrochemistry combined with time-resolved infrared spectroscopy reveals that the photoinduced oxidation of HCO3- by an Ir(III) photoreagent results in the generation of the short-lived bicarbonate radical in less than 50 ns. The highly acidic bicarbonate radical undergoes proton transfer with HCO3- to furnish the carbonate radical anion and H2CO3, leading to the eventual release of CO2 and H2O, thus accounting for the appearance of H2O and CO2 in both electrochemical and photochemical oxidation experiments. The back reaction of the carbonate radical subsequently oxidizes the Ir(II) photoreagent, leading to carbonate. In the absence of this back reaction, dimerization of the carbonate radical provides entry into peroxybicarbonate, which we show undergoes facile oxidation to O2 and CO2. Together, the results reported identify tangible pathways for the design of catalysts for the management of carbonate in energy storage applications.

3.
Nat Commun ; 13(1): 1243, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35273163

ABSTRACT

Electrochemical and photoelectrochemical water splitting offers a scalable approach to producing hydrogen from renewable sources for sustainable energy storage. Depending on the applications, oxygen evolution catalysts (OECs) may perform water splitting under a variety of conditions. However, low stability and/or activity present challenges to the design of OECs, prompting the design of self-healing OECs composed of earth-abundant first-row transition metal oxides. The concept of self-healing catalysis offers a new tool to be employed in the design of stable and functionally active OECs under operating conditions ranging from acidic to basic solutions and from a variety of water sources.

4.
Inorg Chem ; 59(7): 4634-4649, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32196317

ABSTRACT

The elucidation of magnetostructural correlations between bridging ligand substitution and strength of magnetic coupling is essential to the development of high-temperature molecule-based magnetic materials. Toward this end, we report the series of tetraoxolene-bridged FeII2 complexes [(Me3TPyA)2Fe2(RL)]n+ (Me3TPyA = tris(6-methyl-2-pyridylmethyl)amine; n = 2: OMeLH2 = 3,6-dimethoxy-2,5-dihydroxo-1,4-benzoquinone, ClLH2 = 3,6-dichloro-2,5-dihydroxo-1,4-benzoquinone, Na2[NO2L] = sodium 3,6-dinitro-2,5-dihydroxo-1,4-benzoquinone; n = 4: SMe2L = 3,6-bis(dimethylsulfonium)-2,5-dihydroxo-1,4-benzoquinone diylide) and their one-electron-reduced analogues. Variable-temperature dc magnetic susceptibility data reveal the presence of weak ferromagnetic superexchange between FeII centers in the oxidized species, with exchange constants of J = +1.2(2) (R = OMe, Cl) and +0.3(1) (R = NO2, SMe2) cm-1. In contrast, X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy establish a ligand-centered radical in the reduced complexes. Magnetic measurements for the radical-bridged species reveal the presence of strong antiferromagnetic metal-radical coupling, with J = -57(10), -60(7), -58(6), and -65(8) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. The minimal effects of substituents in the 3- and 6-positions of RLx-• on the magnetic coupling strength is understood through electronic structure calculations, which show negligible spin density on the substituents and associated C atoms of the ring. Finally, the radical-bridged complexes are single-molecule magnets, with relaxation barriers of Ueff = 50(1), 41(1), 38(1), and 33(1) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. Taken together, these results provide the first examination of how bridging ligand substitution influences magnetic coupling in semiquinoid-bridged compounds, and they establish design criteria for the synthesis of semiquinoid-based molecules and materials.

5.
Chem Rev ; 120(16): 8716-8789, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32045215

ABSTRACT

Metal-organic frameworks represent the ultimate chemical platform on which to develop a new generation of designer magnets. In contrast to the inorganic solids that have dominated permanent magnet technology for decades, metal-organic frameworks offer numerous advantages, most notably the nearly infinite chemical space through which to synthesize predesigned and tunable structures with controllable properties. Moreover, the presence of a rigid, crystalline structure based on organic linkers enables the potential for permanent porosity and postsynthetic chemical modification of the inorganic and organic components. Despite these attributes, the realization of metal-organic magnets with high ordering temperatures represents a formidable challenge, owing largely to the typically weak magnetic exchange coupling mediated through organic linkers. Nevertheless, recent years have seen a number of exciting advances involving frameworks based on a wide range of metal ions and organic linkers. This review provides a survey of structurally characterized metal-organic frameworks that have been shown to exhibit magnetic order. Section 1 outlines the need for new magnets and the potential role of metal-organic frameworks toward that end, and it briefly introduces the classes of magnets and the experimental methods used to characterize them. Section 2 describes early milestones and key advances in metal-organic magnet research that laid the foundation for structurally characterized metal-organic framework magnets. Sections 3 and 4 then outline the literature of metal-organic framework magnets based on diamagnetic and radical organic linkers, respectively. Finally, Section 5 concludes with some potential strategies for increasing the ordering temperatures of metal-organic framework magnets while maintaining structural integrity and additional function.

6.
J Am Chem Soc ; 141(43): 17092-17097, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31601108

ABSTRACT

The paramagnetic cyano-bridged complex PhB(tBuIm)3Fe-NC-Mo(NtBuAr)3 (Ar = 3,5-Me2C6H3) is readily assembled from a new four-coordinate, high-spin (S = 2) iron(II) monocyanide complex and the three-coordinate molybdenum(III) complex Mo(NtBuAr)3. X-ray diffraction and IR spectroscopy reveal that delocalization of unpaired electron density into the cyanide π* orbitals leads to a reduction of the C-N bond order. Direct current (dc) magnetic susceptibility measurements, supported by electronic structure calculations, demonstrate the presence of strong antiferromagnetic exchange between spin centers, with a coupling constant of J = -122(2) cm-1. To our knowledge, this value represents the strongest magnetic exchange coupling ever to be observed through cyanide. These results demonstrate the ability of low-coordinate metal fragments to engender extremely strong magnetic exchange coupling through cyanide by virtue of significant π-backbonding into the cyanide ligand.

7.
J Am Chem Soc ; 141(17): 7163-7172, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30946580

ABSTRACT

We report a cobalt-based paramagnetic chemical exchange saturation transfer (PARACEST) magnetic resonance (MR) probe that is able to selectively bind and quantitate the concentration of Ca2+ ions under physiological conditions. The parent LCo complex features CEST-active carboxamide groups and an uncoordinated crown ether moiety in close proximity to a high-spin pseudo-octahedral CoII center. Addition of Na+, Mg2+, K+, and Ca2+ leads to binding of these metal ions within the crown ether. Single-crystal X-ray diffraction and solid-state magnetic measurements reveal the presence of a cation-specific coordination environment and magnetic anisotropy of CoII, with axial zero-field splitting parameters for the Na+- and Ca2+-bound complexes differing by over 90%. Owing to these differences, solution-based measurements under physiological conditions indicate reversible binding of Na+ and Ca2+ to give well-separated CEST peaks at 69 and 80 ppm for [LCoNa]+ and [LCoCa]2+, respectively. Dissociation constants for different cation-bound complexes of LCo, as determined by 1H NMR spectroscopy, demonstrate high selectivity toward Ca2+. This finding, in conjunction with the large excess of Na+ in physiological environments, minimizes interference from related cations, such as Mg2+ and K+. Finally, variable-[Ca2+] CEST spectra establish the ratio between the CEST peak intensities for the Ca2+- and Na+-bound probes (CEST80 ppm/CEST69 ppm) as a measure of [Ca2+], providing the first example of a ratiometric quantitation of Ca2+ concentration using PARACEST. Taken together, these results demonstrate the ability of transition metal PARACEST probes to afford a concentration-independent measure of [Ca2+] and provide a new approach for designing MR probes for cation sensing.

9.
Chem Commun (Camb) ; 55(6): 794-797, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30569919

ABSTRACT

The employment of an ancillary amine-substituted bisphosphonate ligand affords a dicobalt complex able to quantitate pH with a remarkably high sensitivity of 8.8(5) pH unit-1 at 37 °C through a ratiometric paramagnetic chemical exchange saturation transfer (PARACEST) approach, where the different pH dependences of amine and amide CEST peak intensities are utilized.

10.
Inorg Chem ; 57(17): 11252-11263, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30136567

ABSTRACT

We report three new Co2-based paramagnetic chemical exchange saturation transfer (PARACEST) probes with the ability to ratiometrically quantitate pH. A CoII2 complex, [LCo2(etidronate)]-, featuring tetra(carboxamide) and OH-substituted etidronate ligands with opposing pH-dependent CEST peak intensities, was previously shown to exhibit a linear correlation between log(CESTOH/CESTNH) and pH in the pH range 6.5-7.6 that provided a sensitivity of 0.99(7) pH unit-1 at 37 °C. Here, we demonstrate through a series of CF3-functionalized CoII2 complexes [(XL')Co2(etidronate)]- (X = NO2, F, Me), that modest changes in the electronic structure of CoII centers through remote ligand substitution can significantly affect the NMR and CEST properties of Co2-based PARACEST probes. Variable-pH NMR and CEST analyses reveal that the chemical shifts of the ligand protons are highly affected by the nature of the X substituent. The ratios of OH and NH CEST peak intensities at 115 and 88, 93 and 79, and 88 and 76 ppm for X = NO2, F, and Me, respectively, afford pH calibration curves with remarkably high sensitivities of 1.49(9), 1.48(7), and 2.04(5) pH unit-1 across the series. The 1.5-2-fold enhancement in pH sensitivity for the CF3-functionalized Co2 probes stems from the complete separation of the OH and NH CEST peaks. Furthermore, incorporation of electron-withdrawing CF3 groups shifts the detection window to a more acidic range of pH 6.2-7.4. Finally, the CoII2 complexes are found to be extremely robust toward substitution and oxidation in aqueous solutions. Taken together, these results highlight the unique ability of transition metal-based PARACEST probes to provide a highly sensitive concentration-independent measure of pH and demonstrate that modest ligand modifications can be a powerful tool for optimizing the pH sensing performance of these probes.

11.
Chem Commun (Camb) ; 53(96): 12962-12965, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29160312

ABSTRACT

An FeII complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19F chemical shift-based pH sensor.

12.
J Am Chem Soc ; 139(44): 15836-15847, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29028326

ABSTRACT

We report a Co2-based magnetic resonance (MR) probe that enables the ratiometric quantitation and imaging of pH through chemical exchange saturation transfer (CEST). This approach is illustrated in a series of air- and water-stable CoII2 complexes featuring CEST-active tetra(carboxamide) and/or hydroxyl-substituted bisphosphonate ligands. For the complex bearing both ligands, variable-pH CEST and NMR analyses reveal highly shifted carboxamide and hydroxyl peaks with intensities that increase and decrease with increasing pH, respectively. The ratios of CEST peak intensities at 104 and 64 ppm are correlated with solution pH in the physiological range 6.5-7.6 to construct a linear calibration curve of log(CEST104 ppm/CEST64 ppm) versus pH, which exhibits a remarkably high pH sensitivity of 0.99(7) pH unit-1 at 37 °C. In contrast, the analogous CoII2 complex with a CEST-inactive bisphosphonate ligand exhibits no such pH response, confirming that the pH sensitivity stems from the integration of amide and hydroxyl CEST effects that show base- and acid-catalyzed proton exchange, respectively. Importantly, the pH calibration curve is independent of the probe concentration and is identical in aqueous buffer and fetal bovine serum. Furthermore, phantom images reveal analogous linear pH behavior. The CoII2 probe is stable toward millimolar concentrations of H2PO4-/HPO42-, CO32-, SO42-, CH3COO-, and Ca2+ ions, and more than 50% of melanoma cells remain viable in the presence of millimolar concentrations of the complex. The stability of the probe in physiological environments suggests that it may be suitable for in vivo studies. Together, these results highlight the ability of dinuclear transition metal PARACEST probes to provide a concentration-independent measure of pH, and they provide a potential design strategy toward the development of MR probes for ratiometric pH imaging.

13.
Chem Sci ; 8(3): 2448-2456, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28694955

ABSTRACT

The potential utility of paramagnetic transition metal complexes as chemical shift 19F magnetic resonance (MR) thermometers is demonstrated. Further, spin-crossover FeII complexes are shown to provide much higher temperature sensitivity than do the high-spin analogues, owing to the variation of spin state with temperature in the former complexes. This approach is illustrated through a series of FeII complexes supported by symmetrically and asymmetrically substituted 1,4,7-triazacyclononane ligand scaffolds bearing 3-fluoro-2-picolyl derivatives as pendent groups (L x ). Variable-temperature magnetic susceptibility measurements, in conjunction with UV-vis and NMR data, show thermally-induced spin-crossover for [Fe(L1)]2+ in H2O, with T1/2 = 52(1) °C. Conversely, [Fe(L2)]2+ remains high-spin in the temperature range 4-61 °C. Variable-temperature 19F NMR spectra reveal the chemical shifts of the complexes to exhibit a linear temperature dependence, with the two peaks of the spin-crossover complex providing temperature sensitivities of +0.52(1) and +0.45(1) ppm per °C in H2O. These values represent more than two-fold higher sensitivity than that afforded by the high-spin analogue, and ca. 40-fold higher sensitivity than diamagnetic perfluorocarbon-based thermometers. Finally, these complexes exhibit excellent stability in a physiological environment, as evidenced by 19F NMR spectra collected in fetal bovine serum.

SELECTION OF CITATIONS
SEARCH DETAIL
...