Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 490: 294-302, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27914328

ABSTRACT

Fluorescent silica nanoparticles (NPs) have potential in biomedical applications as diagnostics and traceable drug delivery agents. In this study, we have synthesized fluorescent dye grafted silica NPs in two step process. First, a stable method to synthesize various sizes of silica NPs ranging from 20 to 52, 95, 210 and 410nm have been successfully demonstrated. Secondly, as-synthesized silica NPs are readily grafted with some fluorescent dyes like IR-820 and fluorescein isothiocyanate (FITC) dyes by simple impregnation method. IR-820 and FITC dyes are 'activated' by (3-mercaptopropyl)trimethoxysilane (MPTMS) and (3-aminopropyl)triethoxysilane (APTS) respectively prior to the grafting on silica NPs. UV-vis spectroscopy is used to test the stability of dye grafted silica NPs. The fluorescent dye grafted silica NPs are quite stable in aqueous solution. Also, a new type of dual dye-doped hybrid silica nanoparticles has been developed. The combination of microscopic and spectroscopic techniques shows that the synthesis parameters have significant effects on the particle shape and size and is tuneable from a few nanometers to a few hundred nanometers. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging.


Subject(s)
Fluorescein-5-isothiocyanate/chemistry , Fluorescent Dyes/chemistry , Indocyanine Green/analogs & derivatives , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Fluorescein-5-isothiocyanate/chemical synthesis , Fluorescent Dyes/chemical synthesis , Indocyanine Green/chemical synthesis , Indocyanine Green/chemistry , Microscopy, Confocal , Nanoparticles/ultrastructure , Silicon Dioxide/chemical synthesis
2.
Nanoscale ; 6(1): 608-15, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24247546

ABSTRACT

Doping in ceria (CeO2) nanoparticles with europium (Eu) of varying concentrations (0, 0.1, 0.5, …, 50 atom%) is studied using complementary experimental techniques and novel observations were made during the investigation. The immediate observable effect was a distinct reduction in particle sizes with increasing Eu concentration attributed to the relaxation of strain introduced due to the replacement of Ce(4+) ions by Eu(3+) ions of larger radius. However, this general trend was reversed in the doping concentration range of 0.1-1 atom% due to the reduction of Ce(4+) to Ce(3+) and the formation of anion vacancies. Quantum confinement effects became evident with the increase of band gap energy when the particle sizes reduced below 7-8 nm. Positron annihilation studies indicated the presence of vacancy type defects in the form of vacancy clusters within the nanoparticles. Some positron annihilation was also seen on the surface of crystallites as a result of diffusion of thermalized positrons before annihilation. Coincidence Doppler broadening measurements indicated the annihilation of positrons with electrons of different species of atoms and the characteristic S-W plot showed a kink-like feature at the particle sizes where quantum confinement effects began.

SELECTION OF CITATIONS
SEARCH DETAIL
...