Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Biomol NMR Assign ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907837

ABSTRACT

Signalosomes are high-order protein machineries involved in complex mechanisms controlling regulated immune defense and cell death execution. The immune response is initiated by the recognition of exogeneous or endogenous signals, triggering the signalosome assembly process. The final step of signalosome fate often involves membrane-targeting and activation of pore-forming execution domains, leading to membrane disruption and ultimately cell death. Such cell death-inducing domains have been thoroughly characterized in plants, mammals and fungi, notably for the fungal cell death execution protein domain HeLo. However, little is known on the mechanisms of signalosome-based immune response in bacteria, and the conformation of cell death executors in bacterial signalosomes is still poorly characterized. We recently uncovered the existence of NLR signalosomes in various multicellular bacteria and used genome mining approaches to identify putative cell death executors in Streptomyces olivochromogenes. These proteins contain a C-terminal amyloid domain involved in signal transmission and a N-terminal domain, termed BELL for Bacteria analogous to fungal HeLL (HeLo-like), presumably responsible for membrane-targeting, pore-forming and cell death execution. In the present study, we report the high yield expression of S. olivochromogenes BELL2 and its characterization by solution NMR spectroscopy. BELL is folded in solution and we report backbone and sidechain assignments. We identified five α-helical secondary structure elements and a folded core much smaller than its fungal homolog HeLo. This study constitutes the first step toward the NMR investigation of the full-length protein assembly and its membrane targeting.

2.
Open Biol ; 13(11): 230221, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37989222

ABSTRACT

Eukaryotic pre-mRNA is processed by a large multiprotein complex to accurately cleave the 3' end, and to catalyse the addition of the poly(A) tail. Within this cleavage and polyadenylation specificity factor (CPSF) machinery, the CPSF73/CPSF3 endonuclease subunit directly contacts both CPSF100/CPSF2 and the scaffold protein Symplekin to form a subcomplex known as the core cleavage complex or mammalian cleavage factor. Here we have taken advantage of a stable CPSF73-CPSF100 minimal heterodimer from Encephalitozoon cuniculi to determine the solution structure formed by the first and second C-terminal domain (CTD1 and CTD2) of both proteins. We find a large number of contacts between both proteins in the complex, and notably in the region between CTD1 and CTD2. A similarity is also observed between CTD2 and the TATA-box binding protein (TBP) domains. Separately, we have determined the structure of the terminal CTD3 domain of CPSF73, which also belongs to the TBP domain family and is connected by a flexible linker to the rest of CPSF73. Biochemical assays demonstrate a key role for the CTD3 of CPSF73 in binding Symplekin, and structural models of the trimeric complex from other species allow for comparative analysis and support an overall conserved architecture.


Subject(s)
Cleavage And Polyadenylation Specificity Factor , Encephalitozoon cuniculi , mRNA Cleavage and Polyadenylation Factors , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/chemistry , Cleavage And Polyadenylation Specificity Factor/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics
3.
Biomol NMR Assign ; 17(1): 43-48, 2023 06.
Article in English | MEDLINE | ID: mdl-36723825

ABSTRACT

The initial pre-mRNA transcript in eukaryotes is processed by a large multi-protein complex in order to correctly cleave the 3' end, and to subsequently add the polyadenosine tail. This cleavage and polyadenylation specificity factor (CPSF) is composed of separate subunits, with structural information available for both isolated subunits and also larger assembled complexes. Nevertheless, certain key components of CPSF still lack high-resolution atomic data. One such region is the heterodimer formed between the first and second C-terminal domains of the endonuclease CPSF73, with those from the catalytically inactive CPSF100. Here we report the backbone and sidechain resonance assignments of a minimal C-terminal heterodimer of CPSF73-CPSF100 derived from the parasite Encephalitozoon cuniculi. The assignment process used several amino-acid specific labeling strategies, and the chemical shift values allow for secondary structure prediction.


Subject(s)
Cleavage And Polyadenylation Specificity Factor , RNA 3' End Processing , Nuclear Magnetic Resonance, Biomolecular , Cleavage And Polyadenylation Specificity Factor/chemistry , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism , RNA Precursors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics
4.
RNA Biol ; 16(11): 1633-1642, 2019 11.
Article in English | MEDLINE | ID: mdl-31390939

ABSTRACT

RIO proteins form a conserved family of atypical protein kinases. RIO2 is a serine/threonine protein kinase/ATPase involved in pre-40S ribosomal maturation. Current crystal structures of archaeal and fungal Rio2 proteins report a monomeric form of the protein. Here, we describe three atomic structures of the human RIO2 kinase showing that it forms a homodimer in vitro. Upon self-association, each protomer ATP-binding pocket is partially remodelled and found in an apostate. The homodimerization is mediated by key residues previously shown to be responsible for ATP binding and catalysis. This unusual in vitro protein kinase dimer reveals an intricate mechanism where identical residues are involved in substrate binding and oligomeric state formation. We speculate that such an oligomeric state might be formed also in vivo and might function in maintaining the protein in an inactive state and could be employed during import.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , Humans , In Vitro Techniques , Models, Molecular , Protein Conformation , Protein Multimerization , Protein Structure, Secondary
5.
Acta Crystallogr D Struct Biol ; 75(Pt 4): 400-415, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30988257

ABSTRACT

Pseudoenzymes have burst into the limelight recently as they provide another dimension to regulation of cellular protein activity. In the eudicot plant lineage, the pseudoenzyme PDX1.2 and its cognate enzyme PDX1.3 interact to regulate vitamin B6 biosynthesis. This partnership is important for plant fitness during environmental stress, in particular heat stress. PDX1.2 increases the catalytic activity of PDX1.3, with an overall increase in vitamin B6 biosynthesis. However, the mechanism by which this is achieved is not known. In this study, the Arabidopsis thaliana PDX1.2-PDX1.3 complex was crystallized in the absence and presence of ligands, and attempts were made to solve the X-ray structures. Three PDX1.2-PDX1.3 complex structures are presented: the PDX1.2-PDX1.3 complex as isolated, PDX1.2-PDX1.3-intermediate (in the presence of substrates) and a catalytically inactive complex, PDX1.2-PDX1.3-K97A. Data were also collected from a crystal of a selenomethionine-substituted complex, PDX1.2-PDX1.3-SeMet. In all cases the protein complexes assemble as dodecamers, similar to the recently reported individual PDX1.3 homomer. Intriguingly, the crystals of the protein complex are statistically disordered owing to the high degree of structural similarity of the individual PDX1 proteins, such that the resulting configuration is a composite of both proteins. Despite the differential methionine content, selenomethionine substitution of the PDX1.2-PDX1.3 complex did not resolve the problem. Furthermore, a comparison of the catalytically competent complex with a noncatalytic complex did not facilitate the resolution of the individual proteins. Interestingly, another catalytic lysine in PDX1.3 (Lys165) that pivots between the two active sites in PDX1 (P1 and P2), and the corresponding glutamine (Gln169) in PDX1.2, point towards P1, which is distinctive to the initial priming for catalytic action. This state was previously only observed upon trapping PDX1.3 in a catalytically operational state, as Lys165 points towards P2 in the resting state. Overall, the study shows that the integration of PDX1.2 into a heteromeric dodecamer assembly with PDX1.3 does not cause a major structural deviation from the overall architecture of the homomeric complex. Nonetheless, the structure of the PDX1.2-PDX1.3 complex highlights enhanced flexibility in key catalytic regions for the initial steps of vitamin B6 biosynthesis. This report highlights what may be an intrinsic limitation of X-ray crystallography in the structural investigation of pseudoenzymes.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carbon-Nitrogen Lyases/chemistry , Carbon-Nitrogen Lyases/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation , Vitamin B 6/metabolism
6.
Biochimie ; 164: 105-110, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30930282

ABSTRACT

Pre-mRNA 3'-end maturation is achieved by a mechanism requiring four different protein complexes assembled from approximately twenty factors. A global understanding of this essential process is still missing due to the inability to structurally characterize the entire complexes, even though structures of the isolated factors have been obtained. In this review, we summarize recent findings regarding the atomic description of one of the major players, the Cleavage and Polyadenylation Specificity Factor complex (CPSF in human, CPF in yeast). These data provide information on the architecture adopted by the major components of this complex, and on its capacity to recognize the polyadenylation signal sequence.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/chemistry , Cleavage Stimulation Factor/chemistry , RNA, Messenger/metabolism , Fungal Proteins/chemistry , Humans , Polyadenylation , Protein Binding , Yeasts/genetics , Yeasts/metabolism
7.
FEBS Open Bio ; 8(10): 1605-1614, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30338212

ABSTRACT

Rrp5 is an essential factor during the ribosome biogenesis process. The protein contains a series of 12 S1 RNA-binding domains followed by a TetratricoPeptide Repeat (TPR) domain. In the past, several studies aiming at defining the function of the TPR domain have used nonequivalent Rrp5 constructs, as these protein fragments include not only the TPR module, but also three or four S1 domains. We solved the structure of the Rrp5 TPR module and demonstrated in vitro that the TPR region alone does not bind RNA, while the three S1 domains preceding the TPR module can associate with homopolymeric RNA. Finally, we tested the association of our Rrp5 constructs with several proposed interactors, in support of cryo-EM-based models. COORDINATES: Atomic coordinates and structure factors have been deposited to the Protein Data Bank under the accession number 5NLG.

8.
RNA Biol ; 15(9): 1174-1180, 2018.
Article in English | MEDLINE | ID: mdl-30176151

ABSTRACT

Ribosome biogenesis requires a variety of trans-acting factors in order to produce functional ribosomal subunits. In human cells, the complex formed by the proteins hNob1 and hPno1 is crucial to the site 3 cleavage occurring at the 3'-end of 18S pre-rRNA. However, the properties and activity of this complex are still poorly understood. We present here a detailed characterization of hNob1 organization and its interaction with hPno1. We redefine the boundaries of the endonuclease PIN domain present in hNob1 and we further delineate the precise interacting modules required for complex formation in hNob1 and hPno1. Altogether, our data contributes to a better understanding of the complex biology required during the site 3 cleavage step in ribosome biogenesis.


Subject(s)
Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Amino Acid Substitution , Binding Sites , Catalytic Domain , Humans , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Domains , Protein Interaction Mapping , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Sequence Homology, Amino Acid
9.
Nucleic Acids Res ; 46(10): 5297-5307, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29718337

ABSTRACT

Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.


Subject(s)
Dictyostelium/genetics , G-Quadruplexes , Nucleic Acid Conformation , Circular Dichroism , Crystallography, X-Ray , Genome , Models, Molecular , Mutation , Nuclear Magnetic Resonance, Biomolecular , Promoter Regions, Genetic , Spectrophotometry, Ultraviolet
10.
Nucleic Acids Res ; 45(10): 6135-6146, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28335001

ABSTRACT

FASTK family proteins have been identified as regulators of mitochondrial RNA homeostasis linked to mitochondrial diseases, but much remains unknown about these proteins. We show that CRISPR-mediated disruption of FASTKD1 increases ND3 mRNA level, while disruption of FASTKD4 reduces the level of ND3 and of other mature mRNAs including ND5 and CYB, and causes accumulation of ND5-CYB precursor RNA. Disrupting both FASTKD1 and FASTKD4 in the same cell results in decreased ND3 mRNA similar to the effect of depleting FASTKD4 alone, indicating that FASTKD4 loss is epistatic. Interestingly, very low levels of FASTKD4 are sufficient to prevent ND3 loss and ND5-CYB precursor accumulation, suggesting that FASTKD4 may act catalytically. Furthermore, structural modeling predicts that each RAP domain of FASTK proteins contains a nuclease fold with a conserved aspartate residue at the putative active site. Accordingly, mutation of this residue in FASTKD4 abolishes its function. Experiments with FASTK chimeras indicate that the RAP domain is essential for the function of the FASTK proteins, while the region upstream determines RNA targeting and protein localization. In conclusion, this paper identifies new aspects of FASTK protein biology and suggests that the RAP domain function depends on an intrinsic nucleolytic activity.


Subject(s)
Cytochromes b/genetics , Electron Transport Complex I/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/physiology , RNA, Messenger/metabolism , RNA-Binding Proteins/physiology , RNA/metabolism , Amino Acid Sequence , CRISPR-Cas Systems , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , Humans , Mitochondria/ultrastructure , Mitochondrial Proteins/chemistry , Models, Molecular , Protein Conformation , Protein Domains , RNA/genetics , RNA, Messenger/genetics , RNA, Mitochondrial , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Sequence Alignment , Sequence Homology , Transcription, Genetic
11.
Protein Expr Purif ; 133: 90-95, 2017 05.
Article in English | MEDLINE | ID: mdl-28284995

ABSTRACT

The Target of Rapamycin Complex is a central controller of cell growth and differentiation in eukaryotes. Its global architecture has been described by cryoelectron microscopy, and regions of its central TOR protein have been described by X-ray crystallography. However, the N-terminal region of this protein, which consists of a series of HEAT repeats, remains uncharacterised at high resolution, most likely due to the absence of a suitable purification procedure. Here, we present a robust method for the preparation of the HEAT-repeat domain, utilizing the thermophilic fungus Chaetomium thermophilum as a source organism. We describe construct design and stable expression in insect cells. An efficient two-step purification procedure is presented, and the purified product is characterised by SEC and MALDI-TOF MS. The methods described pave the way for a complete high-resolution characterisation of this elusive region of the TOR protein.


Subject(s)
Chaetomium , Cloning, Molecular , Fungal Proteins , Gene Expression , Chaetomium/enzymology , Chaetomium/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Protein Domains , Recombinant Proteins , Repetitive Sequences, Amino Acid , TOR Serine-Threonine Kinases/biosynthesis , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/isolation & purification
12.
Nucleic Acids Res ; 44(22): 10862-10878, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27744351

ABSTRACT

Terminal uridyltransferases (TUTases) execute 3' RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3' processome in uridylation of gRNA precursors and mature guide RNAs. Along with KPAP1 poly(A) polymerase, RET1 also participates in mRNA translational activation. RET1 is divergent from human TUTases and is essential for parasite viability in the mammalian host and the insect vector. Given its robust in vitro activity, RET1 represents an attractive target for trypanocide development. Here, we report high-resolution crystal structures of the RET1 catalytic core alone and in complex with UTP analogs. These structures reveal a tight docking of the conserved nucleotidyl transferase bi-domain module with a RET1-specific C2H2 zinc finger and RNA recognition (RRM) domains. Furthermore, we define RET1 region required for incorporation into the 3' processome, determinants for RNA binding, subunit oligomerization and processive UTP incorporation, and predict druggable pockets.


Subject(s)
Coatomer Protein/chemistry , Protozoan Proteins/chemistry , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Drug Design , Hydrogen Bonding , Kinetics , Leishmania/enzymology , Molecular Dynamics Simulation , Protein Binding , Protein Conformation, alpha-Helical , RNA Editing , Substrate Specificity , Trypanocidal Agents/chemistry
13.
RNA Biol ; 13(4): 373-90, 2016.
Article in English | MEDLINE | ID: mdl-26932506

ABSTRACT

Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.


Subject(s)
Escherichia coli/genetics , Riboswitch , Thiamine Pyrophosphate/genetics , Hydroxyl Radical/metabolism , Kinetics , Thermodynamics
14.
Cell Rep ; 12(4): 554-61, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26190100

ABSTRACT

In mammals, the noncoding Xist RNA triggers transcriptional silencing of one of the two X chromosomes in female cells. Here, we report a genetic screen for silencing factors in X chromosome inactivation using haploid mouse embryonic stem cells (ESCs) that carry an engineered selectable reporter system. This system was able to identify several candidate factors that are genetically required for chromosomal repression by Xist. Among the list of candidates, we identify the RNA-binding protein Spen, the homolog of split ends. Independent validation through gene deletion in ESCs confirms that Spen is required for gene repression by Xist. However, Spen is not required for Xist RNA localization and the recruitment of chromatin modifications, including Polycomb protein Ezh2. The identification of Spen opens avenues for further investigation into the gene-silencing pathway of Xist and shows the usefulness of haploid ESCs for genetic screening of epigenetic pathways.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Silencing , Nuclear Proteins/metabolism , RNA, Long Noncoding/genetics , Animals , Cells, Cultured , DNA-Binding Proteins , Enhancer of Zeste Homolog 2 Protein , Haploidy , Mice , Nuclear Proteins/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , RNA-Binding Proteins
15.
Mol Cell ; 58(6): 977-88, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26028537

ABSTRACT

Target of Rapamycin (TOR) plays central roles in the regulation of eukaryote growth as the hub of two essential multiprotein complexes: TORC1, which is rapamycin-sensitive, and the lesser characterized TORC2, which is not. TORC2 is a key regulator of lipid biosynthesis and Akt-mediated survival signaling. In spite of its importance, its structure and the molecular basis of its rapamycin insensitivity are unknown. Using crosslinking-mass spectrometry and electron microscopy, we determined the architecture of TORC2. TORC2 displays a rhomboid shape with pseudo-2-fold symmetry and a prominent central cavity. Our data indicate that the C-terminal part of Avo3, a subunit unique to TORC2, is close to the FKBP12-rapamycin-binding domain of Tor2. Removal of this sequence generated a FKBP12-rapamycin-sensitive TORC2 variant, which provides a powerful tool for deciphering TORC2 function in vivo. Using this variant, we demonstrate a role for TORC2 in G2/M cell-cycle progression.


Subject(s)
Multiprotein Complexes/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/chemistry , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Binding Sites/genetics , Biocatalysis/drug effects , Blotting, Western , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Drug Resistance/genetics , Mass Spectrometry/methods , Mechanistic Target of Rapamycin Complex 2 , Microscopy, Electron , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Sirolimus/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
16.
Biomed Res Int ; 2015: 968127, 2015.
Article in English | MEDLINE | ID: mdl-26078976

ABSTRACT

In eukaryotes, mRNA polyadenylation is a well-known modification that is essential for many aspects of the protein-coding RNAs life cycle. However, modification of the 3' terminal nucleotide within various RNA molecules is a general and conserved process that broadly modulates RNA function in all kingdoms of life. Numerous types of modifications have been characterized, which are generally specific for a given type of RNA such as the CCA addition found in tRNAs. In recent years, the addition of nontemplated uridine nucleotides or uridylation has been shown to occur in various types of RNA molecules and in various cellular compartments with significantly different outcomes. Indeed, uridylation is able to alter RNA half-life both in positive and in negative ways, highlighting the importance of the enzymes in charge of performing this modification. The present review aims at summarizing the current knowledge on the various processes leading to RNA 3'-end uridylation and on their potential impacts in various diseases.


Subject(s)
Polyadenylation/genetics , RNA 3' End Processing/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , Eukaryota/genetics , Humans , MicroRNAs/genetics , RNA Stability/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
17.
J Mol Biol ; 427(19): 3001-22, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26051023

ABSTRACT

The RNA recognition motif (RRM) is the far most abundant RNA binding domain. In addition to the typical ß1α1ß2ß3α2ß4 fold, various sub-structural elements have been described and reportedly contribute to the high functional versatility of RRMs. The heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a highly abundant protein of 64 kDa comprising four RRM domains. Involved in many aspects of RNA metabolism, hnRNP L specifically binds to RNAs containing CA repeats or CA-rich clusters. However, a comprehensive structural description of hnRNP L including its sub-structural elements is missing. Here, we present the structural characterization of the RRM domains of hnRNP L and demonstrate their function in repressing exon 4 of SLC2A2. By comparison of the sub-structural elements between the two highly similar paralog families of hnRNP L and PTB, we defined signatures underlying interacting C-terminal coils (ICCs), the RRM34 domain interaction and RRMs with a C-terminal fifth ß-strand, a variation we denoted vRRMs. Furthermore, computational analysis revealed new putative ICC-containing RRM families and allowed us to propose an evolutionary scenario explaining the origins of the ICC and fifth ß-strand sub-structural extensions. Our studies provide insights of domain requirements in alternative splicing mediated by hnRNP L and molecular descriptions for the sub-structural elements. In addition, the analysis presented may help to classify other abundant RRM extensions and to predict structure-function relationships.


Subject(s)
Exons , Glucose Transporter Type 2/genetics , Heterogeneous-Nuclear Ribonucleoprotein L/chemistry , Heterogeneous-Nuclear Ribonucleoprotein L/metabolism , RNA/metabolism , Alternative Splicing , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , RNA/genetics
18.
J Mol Biol ; 427(16): 2647-62, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26013163

ABSTRACT

Hu 15C1 is a potent anti-human Toll-like receptor 4 (TLR4) neutralizing antibody. To better understand the molecular basis of its biological activity, we used a multidisciplinary approach to generate an accurate model of the Hu 15C1-TLR4 complex. By combining site-directed mutagenesis, in vitro antibody evolution, affinity measurements and X-ray crystallography of Fab fragments, we identified key interactions across the Hu 15C1-TLR4 interface. These contact points were used as restraints to predict the structure of the Fab region of Hu 15C1 bound to TLR4 using computational molecular docking. This model was further evaluated and validated by additional site-directed mutagenesis studies. The predicted structure of the Hu 15C1-TLR4 complex indicates that the antibody antagonizes the receptor dimerization necessary for its activation. This study exemplifies how iterative cycles of antibody engineering can facilitate the discovery of components of antibody-target interactions.


Subject(s)
Antibodies, Neutralizing/immunology , Antigen-Antibody Complex/ultrastructure , Binding Sites, Antibody/immunology , Immunoglobulin Fab Fragments/ultrastructure , Toll-Like Receptor 4/immunology , Amino Acid Sequence , Animals , Antigen-Antibody Complex/immunology , CHO Cells , Cell Line , Cell Surface Display Techniques , Computer Simulation , Cricetinae , Cricetulus , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Models, Molecular , Molecular Docking Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Sequence Alignment , Species Specificity , Surface Plasmon Resonance
19.
Nat Commun ; 5: 5729, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25517350

ABSTRACT

Pentatricopeptide repeat (PPR) proteins control diverse aspects of RNA metabolism in eukaryotic cells. Although recent computational and structural studies have provided insights into RNA recognition by PPR proteins, their highly insoluble nature and inconsistencies between predicted and observed modes of RNA binding have restricted our understanding of their biological functions and their use as tools. Here we use a consensus design strategy to create artificial PPR domains that are structurally robust and can be programmed for sequence-specific RNA binding. The atomic structures of these artificial PPR domains elucidate the structural basis for their stability and modelling of RNA-protein interactions provides mechanistic insights into the importance of RNA-binding residues and suggests modes of PPR-RNA association. The modular mode of RNA binding by PPR proteins holds great promise for the engineering of new tools to target RNA and to understand the mechanisms of gene regulation by natural PPR proteins.


Subject(s)
Mitochondrial Proteins/chemistry , RNA-Binding Proteins/chemistry , RNA/chemistry , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis/metabolism , Binding Sites , Gene Expression Regulation , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Engineering , Protein Stability , Protein Structure, Tertiary , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
Curr Opin Struct Biol ; 29: 34-43, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25260119

ABSTRACT

Although thiamin was the first vitamin discovered over a century ago, it is only within the last decade that its metabolism has begun to be unraveled. Over the last few years, several structural and biochemical studies have provided insight into the unprecedented mechanisms of the proteins involved, revealing some remarkable biochemistry. Thiamin biosynthesis is particularly unusual in eukaryotes (fungi and plants) in that it cannibalizes essential cellular cofactors and relies on single turnover proteins, which succumb to enzymatic suicide. Here we provide an overview of recent structural studies that have advanced our understanding of this vital metabolite and question whether the single turnover proteins act to monitor the level of the essential elements used as substrates.


Subject(s)
Biosynthetic Pathways , Thiamine/biosynthesis , Fungi/metabolism , Plants/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...