Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 854434, 2022.
Article in English | MEDLINE | ID: mdl-35844510

ABSTRACT

Human surfactant protein (SP)-A1 and SP-A2 exhibit differential qualitative and quantitative effects on the alveolar macrophage (AM), including a differential impact on the AM miRNome. Moreover, SP-A rescue (treatment) of SP-A-knockout (KO) infected mice impoves survival. Here, we studied for the first time the role of exogenous SP-A protein treatment on the regulation of lung alveolar cell (LAC) miRNome, the miRNA-RNA targets, and gene expression of SP-A-KO infected mice of both sexes. Toward this, SP-A-KO mice of both sexes were infected with Klebsiella pneumoniae, and half of them were also treated with SP-A2 (1A0). After 6 h of infection/SP-A treatment, the expression levels and pathways of LAC miRNAs, genes, and target miRNA-mRNAs were studied in both groups. We found 1) significant differences in the LAC miRNome, genes, and miRNA-mRNA targets in terms of sex, infection, and infection plus SP-A2 (1A0) protein rescue; 2) an increase in the majority of miRNA-mRNA targets in both study groups in KO male vs. female mice and involvement of the miRNA-mRNA targets in pathways of inflammation, antiapoptosis, and cell cycle; 3) genes with significant changes to be involved in TP-53, tumor necrosis factor (TNF), and cell cycle signaling nodes; 4) when significant changes in the expression of molecules from all analyses (miRNAs, miRNA-mRNA targets, and genes) were considered, two signaling pathways, the TNF and cell cycle, referred to as "integrated pathways" were shown to be significant; 5) the cell cycle pathway to be present in all comparisons made. Because SP-A could be used therapeutically in pulmonary diseases, it is important to understand the molecules and pathways involved in response to an SP-A acute treatment. The information obtained contributes to this end and may help to gain insight especially in the case of infection.


Subject(s)
Alveolar Epithelial Cells , Klebsiella Infections , MicroRNAs , Pulmonary Surfactant-Associated Protein A , Alveolar Epithelial Cells/metabolism , Animals , Female , Humans , Klebsiella Infections/genetics , Klebsiella Infections/metabolism , Klebsiella pneumoniae , Lung/metabolism , Male , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Pulmonary Surfactant-Associated Protein A/biosynthesis , Pulmonary Surfactant-Associated Protein A/genetics , Pulmonary Surfactant-Associated Protein A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
2.
Front Immunol ; 12: 681639, 2021.
Article in English | MEDLINE | ID: mdl-34484180

ABSTRACT

The human innate host defense molecules, SP-A1 and SP-A2 variants, differentially affect survival after infection in mice and in lung transplant patients. SP-A interacts with the sentinel innate immune cell in the alveolus, the alveolar macrophage (AM), and modulates its function and regulation. SP-A also plays a role in pulmonary surfactant-related aspects, including surfactant structure and reorganization. For most (if not all) pulmonary diseases there is a dysregulation of host defense and inflammatory processes and/or surfactant dysfunction or deficiency. Because SP-A plays a role in both of these general processes where one or both may become aberrant in pulmonary disease, SP-A stands to be an important molecule in health and disease. In humans (unlike in rodents) SP-A is encoded by two genes (SFTPA1 and SFTPA2) and each has been identified with extensive genetic and epigenetic complexity. In this review, we focus on functional, structural, and regulatory differences between the two SP-A gene-specific products, SP-A1 and SP-A2, and among their corresponding variants. We discuss the differential impact of these variants on the surfactant structure, the alveolar microenvironment, the regulation of epithelial type II miRNome, the regulation and function of the AM, the overall survival of the organism after infection, and others. Although there have been a number of reviews on SP-A, this is the first review that provides such a comprehensive account of the differences between human SP-A1 and SP-A2.


Subject(s)
Cellular Microenvironment/immunology , Genetic Variation , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Pulmonary Surfactant-Associated Protein A/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Biomarkers , Disease Susceptibility , Humans , Mice , Models, Biological , Proteome , Proteomics/methods , Pulmonary Surfactant-Associated Protein A/chemistry , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactants/metabolism , Structure-Activity Relationship
3.
Antioxidants (Basel) ; 9(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260937

ABSTRACT

BACKGROUND: Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. We investigated whether miRNome differences previously observed between AM from SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response of mice carrying a single gene. METHODS: Human transgenic (hTG) mice, carrying SP-A2 or both SP-A genes, and SP-A-KO mice were exposed to filtered air (FA) or ozone (O3). AM miRNA levels, target gene expression, and pathways determined 18 h after O3 exposure. RESULTS: We found (a) differences in miRNome due to sex, SP-A genotype, and exposure; (b) miRNome of both sexes was largely downregulated by O3, and co-ex had fewer changed (≥2-fold) miRNAs than either group; (c) the number and direction of the expression of genes with significant changes in males and females in co-ex are almost the opposite of those in SP-A2; (d) the same pathways were found in the studied groups; and (e) O3 exposure attenuated sex differences with a higher number of genotype-dependent and genotype-independent miRNAs common in both sexes after O3 exposure. CONCLUSION: Qualitative differences between SP-A2 and co-ex persist 18 h post-O3, and O3 attenuates sex differences.

4.
Microorganisms ; 8(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825654

ABSTRACT

Innate immune molecules, SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A3), differentially affect young mouse survival after infection. Here, we investigated the impact of SP-A variants on the survival of aged mice. hTG mice carried a different SP-A1 or SP-A2 variant and SP-A-KO were either infected with Klebsiella pneumoniae or exposed to filtered air (FA) or ozone (O3) prior to infection, and their survival monitored over 14 days. In response to infection alone, no gene- or sex-specific (except for 6A2) differences were observed; variant-specific survival was observed (1A0 > 6A4). In response to O3, gene-, sex-, and variant-specific survival was observed with SP-A2 variants showing better survival in males than females, and 1A0 females > 1A3 females. A serendipitous, and perhaps clinically important observation was made; mice exposed to FA prior to infection exhibited significantly better survival than infected alone mice. 1A0 provided an overall better survival in males and/or females indicating a differential role for SP-A genetics. Improved ventilation, as provided by FA, resulted in a survival of significant magnitude in aged mice and perhaps to a lesser extent in young mice. This may have clinical application especially within the context of the current pandemic.

5.
Front Immunol ; 11: 1290, 2020.
Article in English | MEDLINE | ID: mdl-32670284

ABSTRACT

Surfactant protein A (SP-A) in addition to its surfactant-related functions interacts with alveolar macrophages (AM), the guardian cells of innate immunity in the lungs, and regulates many of its functions under basal condition and in response to various pressures, such as infection and oxidative stress. The human SP-A locus consists of two functional genes, SFTPA1 and SFTPA2, and one pseudogene. The functional genes encode human SP-A1 and SP-A2 proteins, respectively, and each has been identified with several genetic variants. SP-A variants differ in their ability to regulate lung function mechanics and survival in response to bacterial infection. Here, we investigated the effect of hSP-A variants on the AM gene expression profile in response to Klebsiella pneumoniae infection. We used four humanized transgenic (hTG) mice that each carried SP-A1 (6A2, 6A4) or SP-A2 (1A0, 1A3), and KO. AM gene expression profiling was performed after 6 h post-infection. We found: (a) significant sex differences in the expression of AM genes; (b) in response to infection, 858 (KO), 196 (6A2), 494 (6A4), 276 (1A0), and 397 (1A3) genes were identified (P < 0.05) and some of these were differentially expressed with ≥2 fold, specific to either males or females; (c) significant SP-A1 and SP-A2 variant-specific differences in AM gene expression; (d) via Ingenuity Pathway Analysis (IPA), key pathways and molecules were identified that had direct interaction with TP53, TNF, and cell cycle signaling nodes; (e) of the three pathways (TNF, TP-53, and cell cycle signaling nodes) studied here, all variants except SP-A2 (1A3) female, showed significance for at least 2 of these pathways, and KO male showed significance for all three pathways; (f) validation of key molecules exhibited variant-specific significant differences in the expression between sexes and a similarity in gene expression profile was observed between KO and SP-A1. These results reveal for the first time a large number of biologically relevant functional pathways influenced in a sex-specific manner by SP-A variants in response to infection. These data may assist in studying molecular mechanisms of SP-A-mediated AM gene regulation and potentially identify novel therapeutic targets for K. pneumoniae infection.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Klebsiella Infections/genetics , Klebsiella pneumoniae , Macrophages, Alveolar/metabolism , Pulmonary Surfactant-Associated Protein A/genetics , Animals , Biomarkers , Disease Models, Animal , Female , Host-Pathogen Interactions/immunology , Humans , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/immunology , Macrophages, Alveolar/immunology , Male , Mice , Mice, Transgenic , Sex Factors , Signal Transduction
6.
J Clin Med ; 9(4)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326132

ABSTRACT

The hallmarks of pediatric acute respiratory failure (ARF) are dysregulated inflammation and surfactant dysfunction. The objective is to study association of surfactant protein (SP) genes' single nucleotide polymorphisms (SNPs) with ARF and its morbidity: pulmonary dysfunction at discharge (PDAD), employing a single-, two-, and three-SNP interaction model. We enrolled 468 newborn controls and 248 children aged ≤ 24 months with ARF; 86 developed PDAD. Using quantitative genetic principles, we tested the association of SP genes SNPs with ARF and PDAD. We observed a dominant effect of rs4715 of the SFTPC on ARF risk. In a three-SNP model, we found (a) 34 significant interactions among SNPs of SFTPA1, SFTPA2, and SFTPC associated with ARF (p = 0.000000002-0.05); 15 and 19 of those interactions were associated with increased and decreased risk for ARF, respectively; (b) intergenic SNP-SNP interactions of both hydrophobic and hydrophilic SP genes associated with PDAD (p = 0.00002-0.03). The majority of intra- and intergenic interactions associated with ARF involve the SFTPA2 SNPs, whereas most of the intra- and intergenic interactions associated with PDAD are of SFTPA1 SNPs. We also observed a dominant effect of haplotypes GG of SFTPA1 associated with increased and AA of SFTPC associated with decreased ARF risk (p = 0.02). To the best of our knowledge, this is the first study showing an association of complex interactions of SP genes with ARF and PDAD. Our data indicate that SP genes polymorphisms may contribute to ARF pathogenesis and subsequent PDAD and/or may serve as markers for disease susceptibility in healthy children.

7.
Front Immunol ; 10: 1960, 2019.
Article in English | MEDLINE | ID: mdl-31475015

ABSTRACT

In humans there are two surfactant protein A (SP-A) functional genes SFTPA1 and SFTPA2 encoding innate immune molecules, SP-A1 and SP-A2, respectively, with numerous genetic variants each. SP-A interacts and regulates many of the functions of alveolar macrophages (AM). It is shown that SP-A variants differ in their ability to regulate the AM miRNome in response to oxidative stress (OxS). Because humans have both SP-A gene products, we were interested to determine the combined effect of co-expressed SP-A1/SP-A2 (co-ex) in response to ozone (O3) induced OxS on AM miRNome. Human transgenic (hTG) mice, carrying both SP-A1/SP-A2 (6A2/1A0, co-ex) and SP-A- KO were utilized. The hTG and KO mice were exposed to filtered air (FA) or O3 and miRNA levels were measured after AM isolation with or without normalization to KO. We found: (i) The AM miRNome of co-ex males and females in response to OxS to be largely downregulated after normalization to KO, but after Bonferroni multiple comparison analysis only in females the AM miRNome remained significantly different compared to control (FA); (ii) The targets of the significantly changed miRNAs were downregulated in females and upregulated in males; (iii) Several of the validated mRNA targets were involved in pro-inflammatory response, anti-apoptosis, cell cycle, cellular growth and proliferation; (iv) The AM of SP-A2 male, shown, previously to have major effect on the male AM miRNome in response to OxS, shared similarities with the co-ex, namely in pathways involved in the pro-inflammatory response and anti-apoptosis but also exhibited differences with the cell-cycle, growth, and proliferation pathway being involved in co-ex and ROS homeostasis in SP-A2 male. We speculate that the presence of both gene products vs. single gene products differentially impact the AM responses in males and females in response to OxS.


Subject(s)
Inflammation/immunology , MicroRNAs/genetics , Oxidative Stress/immunology , Pulmonary Surfactant-Associated Protein A/genetics , Pulmonary Surfactant-Associated Protein A/immunology , Animals , Cell Cycle/physiology , Cell Proliferation/physiology , Female , Humans , Macrophages, Alveolar/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ozone/toxicity , Sex Factors
8.
Front Immunol ; 10: 1514, 2019.
Article in English | MEDLINE | ID: mdl-31354704

ABSTRACT

Pulmonary surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. In humans there are two proteins, SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, respectively, which are produced by the alveolar type II cells (T2C). We sought to investigate the differential influence of SP-A1 and SP-A2 in T2C miRNome under oxidative stress (OxS). SP-A knock out (KO) and hTG male and female mice expressing SP-A1 or SP-A2 as well as gonadectomized (Gx) mice were exposed to O3-induced oxidative stress (OxS) or filtered air (FA). Expression of miRNAs and mRNAs was measured in the T2C of experimental animals. (a) In SP-A1 males after normalizing to KO males, significant changes were observed in the miRNome in terms of sex-OxS effects, with 24 miRNAs being differentially expressed under OxS. (b) The mRNA targets of the dysregulated miRNAs included Ago2, Ddx20, Plcg2, Irs1, Elf2, Jak2, Map2k4, Bcl2, Ccnd1, and Vhl. We validated the expression levels of these transcripts, and observed that the mRNA levels of all of these targets were unaffected in SP-A1 T2C but six of these were significantly upregulated in the KO (except Bcl2 that was downregulated). (c) Gondadectomy had a major effect on the expression of miRNAs and in three of the mRNA targets (Irs1, Bcl2, and Vhl). Ccnd1 was upregulated in KO regardless of Gx. (d) The targets of the significantly changed miRNAs are involved in several pathways including MAPK signaling pathway, cell cycle, anti-apoptosis, and other. In conclusion, in response to OxS, SP-A1 and male hormones appear to have a major effect in the T2C miRNome.


Subject(s)
Lung/physiology , Pulmonary Alveoli/physiology , Pulmonary Surfactant-Associated Protein A/metabolism , Animals , Argonaute Proteins/genetics , Cell Cycle , Female , Gonadal Steroid Hormones/metabolism , Humans , Immunity, Innate , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Ovariectomy , Oxidative Stress , Pulmonary Surfactant-Associated Protein A/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
9.
Front Immunol ; 9: 2404, 2018.
Article in English | MEDLINE | ID: mdl-30459763

ABSTRACT

Surfactant protein A (SP-A) is involved in lung innate host defense and surfactant-related functions. The human SFTPA1 and SFTPA2 genes encode SP-A1 and SP-2 proteins, and each gene has been identified with numerous genetic variants. SP-A1 and SP-A2 differentially enhance bacterial phagocytosis. Sex differences have been observed in pulmonary disease and in survival of wild type and SP-A knockout (KO) mice. The impact of human SP-A variants on survival after infection is unknown. In this study, we determined whether SP-A variants differentially affect survival of male and female mice infected with Klebsiella pneumoniae. Transgenic (TG) mice, where each carries a different human (h) SP-A1 (6A2, 6A4), SP-A2 (1A0, 1A3) variant or both variants SP-A1/SP-A2 (6A2/1A0, co-ex), and SP-A- KO, were utilized. The hTG and KO mice were infected intratracheally with K. pneumoniae bacteria, and groups of KO mice were treated with SP-A1 or SP-A2 either prior to and/or at the time of infection and survival for both experimental groups was monitored over 14 days. The binding of purified SP-A1 and SP-A2 proteins to phagocytic and non-phagocytic cells and expression of cell surface proteins in alveolar macrophages (AM) from SP-A1 and SP-A2 mice was examined. We observed gene-, variant-, and sex-specific (except for co-ex) differences with females showing better survival: (a) Gene-specific differences: co-ex = SP-A2 > SP-A1 > KO (both sexes); (b) Variant-specific survival co-ex (6A2/1A0) = 1A0 > 1A3 = 6A2 > 6A4 (both sexes); (c) KO mice treated with SPs (SP-A1 or SP-A2) proteins exhibit significantly (p < 0.05) better survival; (d) SP-A1 and SP-A2 differentially bind to phagocytic, but not to non-phagocytic cells, and AM from SP-A1 and SP-A2 hTG mice exhibit differential expression of cell surface proteins. Our results indicate that sex and SP-A genetics differentially affect survival after infection and that exogenous SP-A1/SP-A2 treatment significantly improves survival. We postulate that the differential SP-A1/SP-A2 binding to the phagocytic cells and the differential expression of cell surface proteins that bind SP-A by AM from SP-A1 and SP-A2 mice play a role in this process. These findings provide insight into the importance of sex and innate immunity genetics in survival following infection.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Host-Pathogen Interactions/genetics , Klebsiella Infections/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/physiology , Pulmonary Surfactant-Associated Protein A/genetics , Animals , Female , Klebsiella Infections/drug therapy , Klebsiella Infections/mortality , Male , Mice , Mice, Knockout , Mice, Transgenic , Phagocytes/immunology , Phagocytes/metabolism , Prognosis , Sex Factors
10.
Front Immunol ; 9: 2256, 2018.
Article in English | MEDLINE | ID: mdl-30333828

ABSTRACT

Surfactant proteins (SP) are involved in surfactant function and innate immunity in the human lung. Both lung function and innate immunity are altered in CF, and altered SP levels and genetic association are observed in Cystic Fibrosis (CF). We hypothesized that single nucleotide polymorphisms (SNPs) within the SP genes associate with CF or severity subgroups, either through single SNP or via SNP-SNP interactions between two SNPs of a given gene (intragenic) and/or between two genes (intergenic). We genotyped a total of 17 SP SNPs from 72 case-trio pedigree (SFTPA1 (5), SFTPA2 (4), SFTPB (4), SFTPC (2), and SFTPD (2)), and identified SP SNP associations by applying quantitative genetic principles. The results showed (a) Two SNPs, SFTPB rs7316 (p = 0.0083) and SFTPC rs1124 (p = 0.0154), each associated with CF. (b) Three intragenic SNP-SNP interactions, SFTPB (rs2077079, rs3024798), and SFTPA1 (rs1136451, rs1059057 and rs4253527), associated with CF. (c) A total of 34 intergenic SNP-SNP interactions among the 4 SP genes to be associated with CF. (d) No SNP-SNP interaction was observed between SFTPA1 or SFTPA2 and SFTPD. (e) Equal number of SNP-SNP interactions were observed between SFTPB and SFTPA1/SFTPA2 (n = 7) and SP-B and SFTPD (n = 7). (f) SFTPC exhibited significant SNP-SNP interactions with SFTPA1/SFTPA2 (n = 11), SFTPB (n = 4) and SFTPD (n = 3). (g) A single SFTPB SNP was associated with mild CF after Bonferroni correction, and several intergenic interactions that are associated (p < 0.01) with either mild or moderate/severe CF were observed. These collectively indicate that complex SNP-SNP interactions of the SP genes may contribute to the pulmonary disease in CF patients. We speculate that SPs may serve as modifiers for the varied progression of pulmonary disease in CF and/or its severity.


Subject(s)
Cystic Fibrosis/genetics , Polymorphism, Single Nucleotide , Pulmonary Surfactant-Associated Protein A/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Adult , Child , Child, Preschool , Cystic Fibrosis/immunology , Cystic Fibrosis/pathology , Female , Humans , Male , Pulmonary Surfactant-Associated Protein A/immunology , Pulmonary Surfactant-Associated Protein C/immunology
11.
Respir Res ; 19(1): 23, 2018 02 03.
Article in English | MEDLINE | ID: mdl-29394894

ABSTRACT

BACKGROUND: Surfactant Protein-A (SP-A) is a major protein component of surfactant and plays a role in surfactant-related functions and innate immunity. Human SP-A consists of two functional genes, SFTPA1 and SFTPA2, encoding SP-A1 and SP-A2 proteins, respectively and each is identified with numerous genetic variants. These differentially enhance bacterial phagocytosis, with SP-A2 variants being more effective than SP-A1. METHODS: Lung functions of humanized transgenic (hTG) mice that carry different SP-A1 and SP-A2 variants or both variants SP-A1/SP-A2 (6A2/1A0, co-ex), as well as SP-A knockout (KO), were studied. The animals were connected to a flexiVent system to obtain forced oscillation technique (FOT) measurements and the data were analyzed using various models. Lung function was assessed after infection (baseline) and following inhaled methacholine concentrations (0-50 mg/mL). RESULTS: Here, we investigated the role of SP-A variants on airway function after Klebsiella pneumoniae (Kp) infection (baseline) and following inhaled methacholine. We found that: 1) in the absence of methacholine no significant differences were observed between SP-A1 and SP-A2 variants and/or SP-A knockout (KO) except for sex differences in most of the parameters studied. 2) In response to methacholine, i) sex differences were observed that were reverse of those observed in the absence of methacholine; ii) SP-A2 (1A3) gene variant in males exhibited increased total and central airway resistance (Rrs and Rn) versus all other variants; iii) In females, SP-A2 (1A3) and SP-A1 (6A2) variants had similar increases in total and central airway resistance (Rrs and Rn) versus all other variants; iv) Allele-specific differences were observed, a) with SP-A2 (1A3) exhibiting significantly higher lung functions versus SP-A2 (1A0) in both sexes, except for Crs, and b) SP-A1 (6A2, 6A4) had more diverse changes in lung function in both sexes. CONCLUSION: We conclude that, in response to infection and methacholine, SP-A variants differentially affect lung function and exhibit sex-specific differences consistent with previously reported findings of functional differences of SP-A variants. Thus, the observed changes in respiratory function mechanics provide insight into the role and importance of genetic variation of innate immune molecules, such as SP-A, on mechanical consequences of lung function after infection and inhaled substances.


Subject(s)
Immunity, Innate/physiology , Klebsiella Infections/genetics , Klebsiella pneumoniae , Pulmonary Surfactant-Associated Protein A/genetics , Sex Characteristics , Animals , Female , Genetic Variation/physiology , Humans , Klebsiella Infections/immunology , Lung/immunology , Lung/microbiology , Lung/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pulmonary Surfactant-Associated Protein A/immunology
12.
Biol Sex Differ ; 8(1): 37, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29202868

ABSTRACT

BACKGROUND: Human innate host defense molecules, surfactant protein A1 (SP-A1), and SP-A2 differentially affect the function and proteome of the alveolar macrophage (AM). We hypothesized that SP-A genes differentially regulate the AM miRNome. METHODS: Humanized transgenic mice expressing SP-A1 and SP-A2 were subjected to O3-induced oxidative stress (OxS) or filtered air (FA), AMs were isolated, and miRNA levels were measured. RESULTS: In SP-A2 males, we found significant changes in miRNome in terms of sex and sex-OxS effects, with 11 miRNAs differentially expressed under OxS. Their mRNA targets included BCL2, CAT, FOXO1, IL6, NF-kB, SOD2, and STAT3. We followed the expression of these transcripts as well as key cytokines, and we found that (a) the STAT3 mRNA significantly increased at 4 h post OxS and returned to baseline at 18 h post OxS. (b) The anti-oxidant protein SOD2 level significantly increased, but the CAT level did not change after 4 h post OxS compared to control. (c) The anti-apoptotic BCL2 mRNA increased significantly (18 h post OxS), but the levels of the other transcripts were decreased. The presence of the SP-A2 gene had a protective role in apoptosis of AMs under OxS compared to mice lacking SP-A (knockout, KO). (d) Pro-inflammatory cytokine IL-6 protein levels were significantly increased in SP-A2 mice compared to KO (4 and 18 h post OxS), which signifies the role of SP-A2 in pro-inflammatory protein expression. (e) SOD2 and CAT mRNAs changed significantly in OxS indicating a plausible role of SP-A2 in the homeostasis of reactive oxygen species. (f) Gonadectomy of transgenic mice showed that sex hormones contribute to significant changes of the miRNome expression. CONCLUSIONS: We conclude that SP-A2 influences the miRNA-mediated sex-specific differences in response to OxS. In males, these differences pertain to inflammatory, anti-apoptotic, and anti-oxidant pathways.


Subject(s)
Macrophages, Alveolar/metabolism , MicroRNAs/metabolism , Oxidative Stress , Pulmonary Surfactant-Associated Protein A/metabolism , Animals , Antioxidants/metabolism , Apoptosis , Castration , Female , Gene Expression Regulation , Humans , Inflammation/metabolism , Male , Mice, Transgenic , Ozone
13.
Oncotarget ; 7(1): 622-37, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26506418

ABSTRACT

We determined expression of 83 long non-coding RNAs (lncRNAs) and identified ZFAS1 to be significantly up-regulated in colorectal cancer (CRC) tissue. In cohort of 119 CRC patients we observed that 111 cases displayed at least two-times higher expression of ZFAS1 in CRC compared to paired normal colorectal tissue (P < 0.0001). By use of CRC cell lines (HCT116+/+, HCT116-/- and DLD-1) we showed, that ZFAS1 silencing decreases proliferation through G1-arrest of cell cycle, and also tumorigenicity of CRC cells. We identified Cyclin-dependent kinase 1 (CDK1) as interacting partner of ZFAS1 by pull-down experiment and RNA immunoprecipitation. Further, we have predicted by bioinformatics approach ZFAS1 to sponge miR-590-3p, which was proved to target CDK1. Levels of CDK1 were not affected by ZFAS1 silencing, but cyclin B1 was decreased in both cell lines. We observed significant increase in p53 levels and PARP cleavage in CRC cell lines after ZFAS1 silencing indicating increase in apoptosis. Our data suggest that ZFAS1 may function as oncogene in CRC by two main actions: (i) via destabilization of p53 and through (ii) interaction with CDK1/cyclin B1 complex leading to cell cycle progression and inhibition of apoptosis. However, molecular mechanisms behind these interactions have to be further clarified.


Subject(s)
Apoptosis/genetics , CDC2 Protein Kinase/genetics , G1 Phase Cell Cycle Checkpoints/genetics , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Blotting, Western , CDC2 Protein Kinase/metabolism , Caco-2 Cells , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclin B1/genetics , Cyclin B1/metabolism , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Protein Binding , RNA Interference , RNA, Long Noncoding/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/metabolism
14.
Tumour Biol ; 36(1): 41-53, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25420907

ABSTRACT

Non-coding RNAs (ncRNAs) are important regulatory molecules involved in various physiological and pathological cellular processes. Small nucleolar RNAs (snoRNAs), subclass of small ncRNAs, have been considered important but unglamorous elements in the production of protein synthesis machinery of cells. However, recent evidence has indicated that these non-coding RNAs might have a crucial role also in controlling cell behavior, and snoRNAs dysfunction could significantly contribute to carcinogenesis. Here, we summarize the most important aspects of snoRNAs biology, their functioning in cancer cell, and potential usage in diagnosis or as a new class of therapeutic targets in cancer.


Subject(s)
Biomarkers, Tumor/physiology , Neoplasms/genetics , RNA, Small Nucleolar/physiology , Alternative Splicing , Animals , Base Sequence , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Neoplasms/metabolism , Neoplasms/therapy , RNA Interference , RNA Processing, Post-Transcriptional , Stress, Physiological
15.
J Biol Chem ; 286(43): 37470-82, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21880738

ABSTRACT

Expression of ß-catenin is strictly regulated in normal cells via the glycogen synthase kinase 3ß (GSK3ß)- adenomatous polyposis coli-axin-mediated degradation pathway. Mechanisms leading to inactivation of this pathway (example: activation of Wnt/ß-catenin signaling or mutations of members of the degradation complex) can result in ß-catenin stabilization and activation of ß-catenin/T-cell factor (TCF) signaling. ß-Catenin-mediated cellular events are diverse and complex. A better understanding of the cellular signaling networks that control ß-catenin pathway is important for designing effective therapeutic strategies targeting this axis. To gain more insight, we focused on determining any possible cross-talk between ß-catenin and mixed lineage kinase 3 (MLK3), a MAPK kinase kinase member. Our studies indicated that MLK3 can induce ß-catenin expression via post-translational stabilization in various cancer cells, including prostate cancer. This function of MLK3 was dependent on its kinase activity. MLK3 can interact with ß-catenin and phosphorylate it in vitro. Overexpression of GSK3ß-WT or the S9A mutant was unable to antagonize MLK3-induced stabilization, suggesting this to be independent of GSK3ß pathway. Surprisingly, despite stabilizing ß-catenin, MLK3 inhibited TCF transcriptional activity in the presence of both WT and S37A ß-catenin. These resulted in reduced expression of ß-catenin/TCF downstream targets Survivin and myc. Immunoprecipitation studies indicated that MLK3 did not decrease ß-catenin/TCF interaction but promoted interaction between ß-catenin and KLF4, a known repressor of ß-catenin/TCF transcriptional activity. In addition, co-expression of MLK3 and ß-catenin resulted in significant G(2)/M arrest. These studies provide a novel insight toward the regulation of ß-catenin pathway, which can be targeted to control cancer cell proliferation, particularly those with aberrant activation of ß-catenin signaling.


Subject(s)
MAP Kinase Kinase Kinases/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Signal Transduction , beta Catenin/metabolism , Amino Acid Substitution , Cell Cycle Checkpoints/genetics , Cell Division/genetics , G2 Phase/genetics , Gene Expression Regulation, Neoplastic/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , HEK293 Cells , HeLa Cells , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MAP Kinase Kinase Kinases/genetics , Mutation, Missense , Neoplasm Proteins/genetics , Neoplasms/genetics , Phosphorylation , Survivin , TCF Transcription Factors/genetics , TCF Transcription Factors/metabolism , beta Catenin/genetics , Mitogen-Activated Protein Kinase Kinase Kinase 11
16.
Biochemistry ; 49(7): 1435-47, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20070122

ABSTRACT

The death effector domain (DED) of the mammalian apoptosis mediator, Fas-associated death domain protein (FADD), induces Escherichia coli cell death under aerobic culture conditions, yet the mechanisms by which FADD-DED induces cell death are not fully understood. Oxidative stress has been implicated as one of the mechanisms. Using a proteomic approach and validation by coexpression analysis, we illustrate that overexpression of FADD-DED in E. coli invokes protein expression changes that facilitate conversion of pro-oxidant NADH into antioxidant NADPH. Typically, isocitrate dehydrogenase, phosphoenolpyruvate carboxykinase, and pyruvate kinase are downregulated and malate dehydrogenase is upregulated. We reasoned that such a change in E. coli cells is an active response to reduce the size of the NADH pool, thereby decreasing the level of ROS generation. From the coexpression studies, we observed that DNA binding protein Hns, which induces growth arrest when overexpressed heterologously, alleviated the cell killing effect of FADD-DED. FADD-DED was expressed as a noncovalently linked multimeric protein in the membrane of E. coli. Exogenous treatment of E. coli cells with FADD-DED in the presence of a membrane component induced cell death, which was accompanied by a shift of the redox balance and a decrease in the cellular ATP level. Cell death was blocked by prior expression of thioredoxin. Localization of FADD-DED to the membrane may shift the cells into a state that stimulates and fuels ROS generation. The cell death mechanism mediated by ROS may mimic antibiotic-mediated bacterial cell death or Bax-mediated apoptosis in mammalian cells. Our results provide a common mechanistic feature of ROS-involved cell death throughout prokaryotes and eukaryotes.


Subject(s)
Apoptosis , Cell Membrane/metabolism , Escherichia coli/cytology , Escherichia coli/metabolism , Fas-Associated Death Domain Protein/metabolism , Reactive Oxygen Species/metabolism , fas Receptor/metabolism , Apoptosis/genetics , Cell Membrane/genetics , Down-Regulation/genetics , Energy Metabolism/genetics , Escherichia coli/genetics , Fas-Associated Death Domain Protein/biosynthesis , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/physiology , Humans , Protein Interaction Domains and Motifs/genetics , Protein Structure, Tertiary/genetics , Reactive Oxygen Species/pharmacology , Up-Regulation/genetics , fas Receptor/biosynthesis , fas Receptor/genetics , fas Receptor/physiology
17.
Chemosphere ; 75(10): 1287-93, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19375147

ABSTRACT

A previously uncultured Propionibacterium was isolated from a highly diluted sample (10(-6)mL) of activated sludge of paper mill effluent. The isolate MOB600 was able to grow on anisole, phenetole, benzene, toluene, phenol, styrene and biphenyl, although it used only limited carbon sources in the minimal media. The partial DNA sequence of 16S ribosomal RNA gene was 93% identical to Luteococcus peritoni CCUG38120 as the closest neighborhood in the family Propionibacteriaceae. Strain MOB600 produced 2-methoxyphenol and 2-ethoxyphenol seemingly in an unproductive pathway from the degradation of anisole and phenetole, respectively. It had a substrate preference to favor 3-alkoxyphenols over 2-alkoxyphenols. Formation of 3-hydroxylated O-aryl alkyl ether was substantially proved by the nearly 1:1 biotransformation of substrate-analogous 1,2-methylenedioxybenzene to 3,4-methylenedioxyphenol (sesamol) showing end-product inhibition. The strain converted 2-/3-methoxyphenols to 3-methoxycatechol. The extradiol ring fission of 3-methoxycatechol appeared to take place in the production of a yellow-colored 2-hydroxymuconate derivative, thereby being able to release methanol spontaneously. High specificity polymerase chain reaction screening for bacterial dioxygenases revealed that the genomic DNA encoded at least three ring-hydroxylating dioxygenase large subunits. Being consistent with substrate availability for this strain, the obtained sequences were closely related to large subunits of an isopropylbenzene 2,3-dioxygenase, a benzene 1,2-dioxygenase, a biphenyl 2,3-dioxygenase, a benzoate 1,2-dioxygenase and a putative dioxygenase in Rhodococcus strains. Our results demonstrate that strain MOB600 may play a major role in the degradation of lignin-like O-aryl alkyl ethers and various aromatic hydrocarbon pollutants in activated sludge of paper mill effluent.


Subject(s)
Ethers/metabolism , Hydrocarbons, Aromatic/metabolism , Propionibacterium/genetics , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Biotransformation , Dioxygenases/genetics , Ethers/analysis , Hydrocarbons, Aromatic/analysis , Industrial Waste , Lignin/metabolism , Paper , Phenotype , Propionibacterium/classification , Propionibacterium/enzymology , RNA, Ribosomal, 16S/genetics , Rhodococcus/genetics , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis
18.
Proc Natl Acad Sci U S A ; 102(11): 4109-13, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15743915

ABSTRACT

Sepsis is the leading cause of death in intensive care units and results from a deleterious systemic host response to infection. Although initially perceived as potentially deleterious, catalytic antibodies have been proposed to participate in removal of metabolic wastes and protection against infection. Here we show that the presence in plasma of IgG endowed with serine protease-like hydrolytic activity strongly correlates with survival from sepsis. Variances of catalytic rates of IgG were greater in the case of patients with severe sepsis than healthy donors (P < 0.001), indicating that sepsis is associated with alterations in plasma levels of hydrolytic IgG. The catalytic rates of IgG from patients who survived were significantly greater than those of IgG from deceased patients (P < 0.05). The cumulative rate of survival was higher among patients exhibiting high rates of IgG-mediated hydrolysis as compared with patients with low hydrolytic rates (P < 0.05). An inverse correlation was also observed between the markers of severity of disseminated intravascular coagulation and rates of hydrolysis of patients' IgG. Furthermore, IgG from three surviving patients hydrolyzed factor VIII, one of which also hydrolyzed factor IX, suggesting that, in some patients, catalytic IgG may participate in the control of disseminated microvascular thrombosis. Our observations provide the first evidence that hydrolytic antibodies might play a role in recovery from a disease.


Subject(s)
Antibodies, Catalytic/blood , Sepsis/immunology , Antibodies, Catalytic/immunology , Antibodies, Catalytic/metabolism , Biomarkers , Disseminated Intravascular Coagulation/immunology , Factor IX/metabolism , Factor VIII/metabolism , Humans , Hydrolysis , Plasma/immunology , Prognosis , Sepsis/diagnosis , Sepsis/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...