Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34288872

ABSTRACT

Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records. As a preliminary step of this examination, sleep stages are systematically determined. In practice, sleep stage classification relies on the visual inspection of 30-second epochs of polysomnography signals. Numerous automatic approaches have been developed to replace this tedious and expensive task. Although these methods demonstrated better performance than human sleep experts on specific datasets, they remain largely unused in sleep clinics. The main reason is that each sleep clinic uses a specific PSG montage that most automatic approaches cannot handle out-of-the-box. Moreover, even when the PSG montage is compatible, publications have shown that automatic approaches perform poorly on unseen data with different demographics. To address these issues, we introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages. We trained and evaluated this model in a leave-one-out-dataset fashion on a large corpus of 8 heterogeneous sleep staging datasets to make it robust to demographic changes. When evaluated on an unseen dataset, RobustSleepNet reaches 97% of the F1 of a model explicitly trained on this dataset. Hence, RobustSleepNet unlocks the possibility to perform high-quality out-of-the-box automatic sleep staging with any clinical setup. We further show that finetuning RobustSleepNet, using a part of the unseen dataset, increases the F1 by 2% when compared to a model trained specifically for this dataset. Therefore, finetuning might be used to reach a state-of-the-art level of performance on a specific population.


Subject(s)
Electroencephalography , Sleep Stages , Humans , Machine Learning , Polysomnography , Sleep
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(9): 1955-1965, 2020 09.
Article in English | MEDLINE | ID: mdl-32746326

ABSTRACT

Sleep stage classification constitutes an important element of sleep disorder diagnosis. It relies on the visual inspection of polysomnography records by trained sleep technologists. Automated approaches have been designed to alleviate this resource-intensive task. However, such approaches are usually compared to a single human scorer annotation despite an inter-rater agreement of about 85% only. The present study introduces two publicly-available datasets, DOD-H including 25 healthy volunteers and DOD-O including 55 patients suffering from obstructive sleep apnea (OSA). Both datasets have been scored by 5 sleep technologists from different sleep centers. We developed a framework to compare automated approaches to a consensus of multiple human scorers. Using this framework, we benchmarked and compared the main literature approaches to a new deep learning method, SimpleSleepNet, which reach state-of-the-art performances while being more lightweight. We demonstrated that many methods can reach human-level performance on both datasets. SimpleSleepNet achieved an F1 of 89.9% vs 86.8% on average for human scorers on DOD-H, and an F1 of 88.3% vs 84.8% on DOD-O. Our study highlights that state-of-the-art automated sleep staging outperforms human scorers performance for healthy volunteers and patients suffering from OSA. Considerations could be made to use automated approaches in the clinical setting.


Subject(s)
Sleep Apnea, Obstructive , Sleep Stages , Humans , Polysomnography , Sleep , Sleep Apnea, Obstructive/diagnosis
3.
Sleep ; 43(11)2020 11 12.
Article in English | MEDLINE | ID: mdl-32433768

ABSTRACT

STUDY OBJECTIVES: The development of ambulatory technologies capable of monitoring brain activity during sleep longitudinally is critical for advancing sleep science. The aim of this study was to assess the signal acquisition and the performance of the automatic sleep staging algorithms of a reduced-montage dry-electroencephalographic (EEG) device (Dreem headband, DH) compared to the gold-standard polysomnography (PSG) scored by five sleep experts. METHODS: A total of 25 subjects who completed an overnight sleep study at a sleep center while wearing both a PSG and the DH simultaneously have been included in the analysis. We assessed (1) similarity of measured EEG brain waves between the DH and the PSG; (2) the heart rate, breathing frequency, and respiration rate variability (RRV) agreement between the DH and the PSG; and (3) the performance of the DH's automatic sleep staging according to American Academy of Sleep Medicine guidelines versus PSG sleep experts manual scoring. RESULTS: The mean percentage error between the EEG signals acquired by the DH and those from the PSG for the monitoring of α was 15 ± 3.5%, 16 ± 4.3% for ß, 16 ± 6.1% for λ, and 10 ± 1.4% for θ frequencies during sleep. The mean absolute error for heart rate, breathing frequency, and RRV was 1.2 ± 0.5 bpm, 0.3 ± 0.2 cpm, and 3.2 ± 0.6%, respectively. Automatic sleep staging reached an overall accuracy of 83.5 ± 6.4% (F1 score: 83.8 ± 6.3) for the DH to be compared with an average of 86.4 ± 8.0% (F1 score: 86.3 ± 7.4) for the 5 sleep experts. CONCLUSIONS: These results demonstrate the capacity of the DH to both monitor sleep-related physiological signals and process them accurately into sleep stages. This device paves the way for, large-scale, longitudinal sleep studies. CLINICAL TRIAL REGISTRATION: NCT03725943.


Subject(s)
Electroencephalography , Sleep Stages , Algorithms , Polysomnography , Sleep
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 556-561, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31945960

ABSTRACT

Much attention has been given to automatic sleep staging algorithms in past years, but the detection of discrete events in sleep studies is also crucial for precise characterization of sleep patterns and possible diagnosis of sleep disorders. We propose here a deep learning model for automatic detection and annotation of arousals and leg movements. Both of these are commonly seen during normal sleep, while an excessive amount of either is linked to disrupted sleep patterns, excessive daytime sleepiness impacting quality of life, and various sleep disorders. Our model was trained on 1,485 subjects and tested on 1,000 separate recordings of sleep. We tested two different experimental setups and found optimal arousal detection was attained by including a recurrent neural network module in our default model with a dynamic default event window (F1 = 0.75), while optimal leg movement detection was attained using a static event window (F1 = 0.65). Our work show promise while still allowing for improvements. Specifically, future research will explore the proposed model as a general-purpose sleep analysis model.


Subject(s)
Deep Learning , Polysomnography , Quality of Life , Sleep
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1596-1600, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946201

ABSTRACT

Polysomnography (PSG) is the gold standard for diagnosing sleep obstructive apnea (OSA). It allows monitoring of breathing events throughout the night. The detection of these events is usually done by trained sleep experts. However, this task is tedious, highly time-consuming and subject to important inter-scorer variability. In this study, we adapted our state-of-the-art deep learning method for sleep event detection, DOSED, to the detection of sleep breathing events in PSG for the diagnosis of OSA. We used a dataset of 52 PSG recordings with apnea-hypopnea event scoring from 5 trained sleep experts. We assessed the performance of the automatic approach and compared it to the inter-scorer performance for both the diagnosis of OSA severity and, at the microscale, for the detection of single breathing events. We observed that human sleep experts reached an average accuracy of 75% while the automatic approach reached 81% for sleep apnea severity diagnosis. The F1 score for individual event detection was 0.55 for experts and 0.57 for the automatic approach, on average. These results demonstrate that the automatic approach can perform at a sleep expert level for the diagnosis of OSA.


Subject(s)
Sleep Apnea, Obstructive , Humans , Polysomnography , Sleep , Sleep Apnea, Obstructive/diagnosis
6.
Front Hum Neurosci ; 12: 88, 2018.
Article in English | MEDLINE | ID: mdl-29568267

ABSTRACT

Recent research has shown that auditory closed-loop stimulation can enhance sleep slow oscillations (SO) to improve N3 sleep quality and cognition. Previous studies have been conducted in lab environments. The present study aimed to validate and assess the performance of a novel ambulatory wireless dry-EEG device (WDD), for auditory closed-loop stimulation of SO during N3 sleep at home. The performance of the WDD to detect N3 sleep automatically and to send auditory closed-loop stimulation on SO were tested on 20 young healthy subjects who slept with both the WDD and a miniaturized polysomnography (part 1) in both stimulated and sham nights within a double blind, randomized and crossover design. The effects of auditory closed-loop stimulation on delta power increase were assessed after one and 10 nights of stimulation on an observational pilot study in the home environment including 90 middle-aged subjects (part 2).The first part, aimed at assessing the quality of the WDD as compared to a polysomnograph, showed that the sensitivity and specificity to automatically detect N3 sleep in real-time were 0.70 and 0.90, respectively. The stimulation accuracy of the SO ascending-phase targeting was 45 ± 52°. The second part of the study, conducted in the home environment, showed that the stimulation protocol induced an increase of 43.9% of delta power in the 4 s window following the first stimulation (including evoked potentials and SO entrainment effect). The increase of SO response to auditory stimulation remained at the same level after 10 consecutive nights. The WDD shows good performances to automatically detect in real-time N3 sleep and to send auditory closed-loop stimulation on SO accurately. These stimulation increased the SO amplitude during N3 sleep without any adaptation effect after 10 consecutive nights. This tool provides new perspectives to figure out novel sleep EEG biomarkers in longitudinal studies and can be interesting to conduct broad studies on the effects of auditory stimulation during sleep.

SELECTION OF CITATIONS
SEARCH DETAIL
...