Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 38(9): 1947-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25211602

ABSTRACT

On million-year timescales, carbonate rock weathering exerts no net effect on atmospheric CO2 concentration. However, on timescales of decades-to-centuries, it can contribute to sequestration of anthropogenic CO2 and increase land-ocean alkalinity flux, counteracting ocean acidification. Historical evidence indicates this flux is sensitive to land use change, and recent experimental evidence suggests that trees and their associated soil microbial communities are major drivers of continental mineral weathering. Here, we review key physical and chemical mechanisms by which the symbiotic mycorrhizal fungi of forest tree roots potentially enhance carbonate rock weathering. Evidence from our ongoing field study at the UK's national pinetum confirms increased weathering of carbonate rocks by a wide range of gymnosperm and angiosperm tree species that form arbuscular (AM) or ectomycorrhizal (EM) fungal partnerships. We demonstrate that calcite-containing rock grains under EM tree species weather significantly faster than those under AM trees, an effect linked to greater soil acidification by EM trees. Weathering and corresponding alkalinity export are likely to increase with rising atmospheric CO2 and associated climate change. Our analyses suggest that strategic planting of fast-growing EM angiosperm taxa on calcite- and dolomite-rich terrain might accelerate the transient sink for atmospheric CO2 and slow rates of ocean acidification.


Subject(s)
Carbon Cycle , Carbonates , Forests , Mycorrhizae , Trees/microbiology , Trees/physiology , Magnoliopsida , Minerals , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...