Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 80(11): 115103, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947753

ABSTRACT

We describe a simple system for timing and control, which provides control of analog, digital, and radio-frequency signals. Our system differs from most common laboratory setups in that it is open source, built from off-the-shelf components, synchronized to a common and accurate clock, and connected over an Ethernet network. A simple bus architecture facilitates creating new and specialized devices with only moderate experience in circuit design. Each device operates independently, requiring only an Ethernet network connection to the controlling computer, a clock signal, and a trigger signal. This makes the system highly robust and scalable. The devices can all be connected to a single external clock, allowing synchronous operation of a large number of devices for situations requiring precise timing of many parallel control and acquisition channels. Provided an accurate enough clock, these devices are capable of triggering events separated by one day with near-microsecond precision. We have achieved precisions of approximately 0.1 ppb (parts per 10(9)) over 16 s.

2.
Phys Rev Lett ; 100(24): 240407, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18643560

ABSTRACT

We demonstrate an asymmetric optical potential barrier for ultracold 87Rb atoms using laser light tuned near the D2 optical transition. Such a one-way barrier, where atoms incident on one side are transmitted but reflected from the other, is a realization of Maxwell's demon and has important implications for cooling atoms and molecules not amenable to standard laser-cooling techniques. In our experiment, atoms are confined to a far-detuned dipole trap consisting of a single focused Gaussian beam, which is divided near the focus by the barrier. The one-way barrier consists of two focused laser beams oriented almost normal to the dipole-trap axis. The first beam is tuned to present either a potential well or barrier, depending on the state of the incident atoms. On the reflecting side of the barrier, the second beam optically pumps the atoms to the reflecting (barrier) state, thus producing the asymmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...