Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 108(7): 2406-2414, 2019 07.
Article in English | MEDLINE | ID: mdl-30849460

ABSTRACT

Particulate matter present in drug products intended for parenteral administration to patients is typically monitored and controlled in the finished drug product to minimize potential risks to patients. In contrast to particulates found in drug products, the current study evaluated particulates representative of materials and operations typically used in the dose preparation and administration of drug products. A comprehensive assessment of intrinsic and extrinsic sources of subvisible and submicron particulates arising from materials associated with subcutaneous and intravenous dose preparation and administration was conducted. In particular, particles arising from disposable syringes, commercial sterile diluents, and intravenous supplies were quantitated using established methods for subvisible (light obscuration, flow imaging) and submicron particles (resistive pulse sensing). Each of these sources contributed varying amounts of particulates; therefore, owing to sources from materials required for administration, it is inadequate to assume that the total particulate load delivered to patients arises solely from the drug product. Careful consideration of the administration method and supplies used can improve the predictability of particulate levels present in dose preparations or administration volumes.


Subject(s)
Particulate Matter/chemistry , Pharmaceutical Preparations/chemistry , Administration, Intravenous/methods , Drug Compounding/methods
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 2): 066701, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18233937

ABSTRACT

We propose a method for approximating the adhesion parameters in the Shan and Chen multicomponent, multiphase lattice Boltzmann model that leads to the desired fluid-solid contact angle. The method is a straightforward application of Young's equation with substitution of the Shan and Chen cohesion parameter and a density factor for the fluid-fluid interfacial tension, and the adhesion parameters for the corresponding fluid-solid interfacial tensions.

SELECTION OF CITATIONS
SEARCH DETAIL
...