Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 5(4): 3052-8, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21405144

ABSTRACT

Graphene oxides (GOs), beyond their widely reported use as precursors for single-layer graphene sheets, are in fact excellent materials themselves (polymers in two-dimension, polyelectrolyte-like, aqueous solubility and biocompatibility, etc.). In this reported work we used aqueous GOs to effectively disperse few-layer graphene sheets (GNs) in suspension for facile wet-processing into nanocomposites of GNs embedded in GOs (as the polymeric matrix). The resulting lightweight and plastic-like nanocomposite materials remained mechanically flexible even at high loadings of GNs, and they were found to be highly efficient in thermal transport, with the experimentally determined thermal diffusivity competitive to those typically observed only in well-known thermally conductive metals such as aluminum and copper. As demonstrated, GOs apparently represent a unique class of two-dimensional polymeric materials for potentially "all-carbon" nanocomposites, among others, which may find technological applications independent of those widely proclaimed for graphene sheets.

2.
ACS Appl Mater Interfaces ; 2(11): 3217-22, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20942436

ABSTRACT

Graphene oxides (GOs) in terms of both structure and property are essentially polyelectrolytes in a two-dimensional sheet configuration. As is well-established in the literature, polyelectrolytes are, in general, good dispersion agents for single-walled carbon nanotubes (SWNTs), which are otherwise in bundles because of strong van der Waals interactions. We report here a study in which GOs were used to disperse SWNTs, both as-purified and separated semiconducting SWNTs, for solution-like homogeneous suspensions. As a demonstration for their potentials, the optically transparent dispersions were used in a more accurate determination of the absorptivities for the band-gap transitions in semiconducting SWNTs. Results on exploration of the use of the GO-dispersed SWNTs in the development of unique carbon nanocomposite materials are also presented and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...