Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(13): 14887-14898, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585113

ABSTRACT

Polylactic acid (PLA) and poly(ethylene terephthalate glycol) (PETG) are popular thermoplastics used in additive manufacturing applications. The mechanical properties of PLA and PETG can be significantly improved by introducing fillers, such as glass and iron nanoparticles (NPs), into the polymer matrix. Molecular dynamics (MD) simulations with the reactive INTERFACE force field were used to predict the mechanical responses of neat PLA/PETG and PLA-glass/iron and PETG-glass/iron nanocomposites with relatively high loadings of glass/iron NPs. We found that the iron and glass NPs significantly increased the elastic moduli of the PLA matrix, while the PETG matrix exhibited modest increases in elastic moduli. This difference in reinforcement ability may be due to the slightly greater attraction between the glass/iron NP and PLA matrix. The NASA Multiscale Analysis Tool was used to predict the mechanical response across a range of volume percent glass/iron filler by using only the neat and highly loaded MD predictions as input. This provides a faster and more efficient approach than creating multiple MD models per volume percent per polymer/filler combination. To validate the micromechanics predictions, experimental samples incorporating hollow glass microspheres (MS) and carbonyl iron particles (CIP) into PLA/PETG were developed and tested for elastic modulus. The CIP produced a larger reinforcement in elastic modulus than the MS, with similar increases in elastic modulus between PLA/CIP and PETG/CIP at 7.77 vol % CIP. The micromechanics-based mechanical predictions compare excellently with the experimental values, validating the integrated micromechanical/MD simulation-based approach.

2.
ACS Mater Au ; 4(2): 179-184, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38496052

ABSTRACT

Emergent high entropy nanomaterials and their associated complex surface structure hold promise to unlock unique catalytic intermediate pathways and photonic/plasmonic interactions; however, synthetic strategies to tune the size, morphological, and stoichiometric properties remain limited. This work demonstrates a confined electro-precipitation mechanism for the formation of tunable, high-entropy oxide microspheres within emulsion droplet scaffolds. This mechanism complements a traditional confined electrodeposition mechanism and explains the previously observed anomalous formation of thermodynamically unfavorable particles, including lanthanide species. Mass transfer studies reveal that microsphere coverage over a surface may be tuned and modeled by using a time-dependent modified Levich equation. Additionally, morphological tuning was demonstrated as a function of experimental conditions, such as rotation rate and precursor concentration. Finally, extension to multimetallic species permitted the generation of high-entropy lanthanide oxide microspheres, which were confirmed to have equimolar stoichiometries via energy dispersive spectroscopy and inductively coupled plasma mass spectrometry. This novel method promises to generate tunable, complex oxides with applications to thermal catalysis, optics, and applications yet unknown.

3.
J Environ Manage ; 351: 119872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157579

ABSTRACT

Controlled release of active ingredients are important for drug delivery and more recently environmental applications including modulated dosing of chemical and biological controls. This study demonstrates the importance of investigating various material science factors that can influence the diffusion rates of alginate beads to improve and tune their performance for marine environmental applications. This investigation aimed to design a rational workflow to aid in leveraging alginate bead use as a carrier matrix for releasing a specific active agent into water. Experiments were conducted to focus on the narrow a large list of relevant material formulation parameters, which included chitosan molecular weight, chitosan concentration, calcium concentration, drop height, and bead size. Once the most relevant material preparation methods were screened, a more robust statistic Design of Experiments approach was performed and results determined the important (and unimportant) factors for increasing dye release kinetics in marine water. The process was further streamlined by narrowing the critical experimental factors to a three-level based on the prior analysis: chitosan MW, chitosan concentration, and bead size. Analysis of the collected data indicated that while chitosan MW had a negligible impact (Fstatistic = 0.22), bead size (Fstatistic = 60.33) significantly influenced the diffusion rates based on surface area. However, chitosan MW had minor effects where lower chitosan MW enabled higher product release rates. This case investigation was a novel application of the design of experiment approach towards environmental applications to understand differences in release rates to marine waters for the first time and the workflow provided also serve as the basis for researchers to optimize other environmental applications requiring optimization when it is unknown how a large number of formulation variables will impact performance in different environmental scenarios.


Subject(s)
Chitosan , Chitosan/chemistry , Alginates/chemistry , Calcium , Water , Hexuronic Acids/chemistry , Glucuronic Acid/chemistry
4.
Nanoscale ; 15(16): 7365-7373, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37038929

ABSTRACT

Atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) deciphers surface morphology of thin-film polymer blends and composites by simultaneously mapping physical topography and chemical composition. However, acquiring quantitative phase and composition information from multi-component blends can be challenging using AFM-IR due to the possible overlapping infrared absorption bands between different species. Isotope labeling one of the blend components introduces a new type of bond (carbon-deuterium vibration) that can be targeted using AFM-IR and responds at wavelengths sufficiently shifted toward unoccupied regions (around 2200 cm-1). In this project, AFM-IR was used to probe the surface morphology and chemical composition of three polymer blends containing deuterated polystyrene; each blend is expected to exhibit various degrees of miscibility. AFM-IR results successfully demonstrated that deuterium labeling prevents infrared spectral overlap and enables the visualization of blend phases that could not normally be distinguished by other scanning probe techniques. The nanoscale domain composition was resolved by fast infrared spectrum analysis. Overall, we presented isotope labeling as a robust approach for circumventing obstacles preventing the quantitative analysis of multiphase systems by AFM-IR.

5.
Macromol Rapid Commun ; 43(24): e2200249, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35856189

ABSTRACT

Likened to both thermosets and thermoplastics, vitrimers are a unique class of materials that combine remarkable stability, healability, and reprocessability. Herein, this work describes a photopolymerized thiol-ene-based vitrimer that undergoes dynamic covalent exchanges through uncatalyzed transamination of enamines derived from cyclic ß-triketones, whereby the low energy barrier for exchange facilitates reprocessing and enables rapid depolymerization. Accordingly, an alkene-functionalized ß-triketone, 5,5-dimethyl-2-(pent-4-enoyl)cyclohexane-1,3-dione, is devised which is then reacted with 1,6-diaminohexane in a stoichiometrically imbalanced fashion (≈1:0.85 primary amine:triketone). The resulting networks exhibit subambient glass transition temperature (Tg = 5.66 °C) by differential scanning calorimetry. Using a Maxwell stress-relaxation fit, the topology-freezing temperature (Tv ) is calculated to be -32 °C. Small-amplitude oscillatory shear rheological analysis enables to identify a practical critical temperature above which the vitrimer can be successfully reprocessed (Tv,eff ). Via the introduction of excess primary amines, this work can readily degrade the networks into monomeric precursors, which are in turn reacted with diamines to regenerate reprocessable networks. Photopolymerization provides unique spatiotemporal control over the network topology, thereby opening the path for further investigation of vitrimer properties. As such, this work expands the toolbox of chemical upcycling of networks and enables their wider implementation.

6.
Macromol Rapid Commun ; 43(24): e2200487, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35822234

ABSTRACT

Incorporating dynamic covalent bonds into block copolymers provides useful molecular level information during mechanical testing, but it is currently unknown how the incorporation of these units affects the resultant polymer morphology. High-molecular-weight polyisobutylene-b-polystyrene block copolymers containing an anthracene/maleimide dynamic covalent bond are synthesized through a combination of postpolymerization modification, reversible addition-fragmentation chain-transfer polymerization, and Diels-Alder coupling. The bulk morphologies with and without dynamic covalent bond are characterized by atomic force microscopy  and small-angle X-ray scattering, which reveal a strong dependence on annealing time and casting solvent. Morphology is largely unaffected by the inclusion of the mechanophore. The high-molecular-weight polymers synthesized allow interrogation of a large range of polymer domain sizes.

7.
R Soc Open Sci ; 9(3): 211637, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35360348

ABSTRACT

The design of bioinspired polymers has long been an area of intense study, however, applications to the design of concrete admixtures for improved materials performance have been relatively unexplored. In this work, we functionalized poly(acrylic acid) (PAA), a simple analogue to polycarboxylate ether admixtures in concrete, with dopamine to form a catechol-bearing polymer (PAA-g-DA). Synthetic routes using hydroxybenzotriazole (HOBt) as an activating agent were examined for their ability in grafting dopamine to the PAA backbone. Previous literature using the traditional coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to graft dopamine to PAA were found to be inconsistent and the sensitivity of EDC coupling reactions necessitated a search for an alternative. Additionally, HOBt allowed for greater control over per cent functionalization of the backbone, is a simple, robust reaction, and showed potential for scalability. This finding also represents a novel synthetic pathway for amide bond formation between dopamine and PAA. Finally, we performed preliminary adhesion studies of our polymer on rose granite specimens and demonstrated a 56% improvement in the mean adhesion strength over unfunctionalized PAA. These results demonstrate an early study on the potential of PAA-g-DA to be used for improving the bonds within concrete.

8.
J Am Chem Soc ; 143(43): 18261-18271, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34677965

ABSTRACT

Rapid and robust sensing of nerve agent (NA) threats is necessary for real-time field detection to facilitate timely countermeasures. Unlike conventional phosphotriesterases employed for biocatalytic NA detection, this work describes the use of a new, green, thermally stable, and biocompatible zirconium metal-organic framework (Zr-MOF) catalyst, MIP-202(Zr). The biomimetic Zr-MOF-based catalytic NA recognition layer was coupled with a solid-contact fluoride ion-selective electrode (F-ISE) transducer, for potentiometric detection of diisopropylfluorophosphate (DFP), a F-containing G-type NA simulant. Catalytic DFP degradation by MIP-202(Zr) was evaluated and compared to the established UiO-66-NH2 catalyst. The efficient catalytic DFP degradation with MIP-202(Zr) at near-neutral pH was validated by 31P NMR and FT-IR spectroscopy and potentiometric F-ISE and pH-ISE measurements. Activation of MIP-202(Zr) using Soxhlet extraction improved the DFP conversion rate and afforded a 2.64-fold improvement in total percent conversion over UiO-66-NH2. The exceptional thermal and storage stability of the MIP-202/F-ISE sensor paves the way toward remote/wearable field detection of G-type NAs in real-world environments. Overall, the green, sustainable, highly scalable, and biocompatible nature of MIP-202(Zr) suggests the unexploited scope of such MOF catalysts for on-body sensing applications toward rapid on-site detection and detoxification of NA threats.


Subject(s)
Biomimetic Materials/chemistry , Isoflurophate/analysis , Metal-Organic Frameworks/chemistry , Nerve Agents/analysis , Catalysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Fluorides/analysis , Green Chemistry Technology , Isoflurophate/chemistry , Limit of Detection , Nerve Agents/chemistry , Wearable Electronic Devices , Zirconium/chemistry
9.
ACS Macro Lett ; 3(10): 1069-1073, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-35610794

ABSTRACT

The fracture-healing behavior of model physically associating triblock copolymer gels was investigated with experiments coupling shear rheometry and particle tracking flow visualization. Fractured gels were allowed to rest for specific time durations, and the extent of strength recovered during the resting time was quantified as a function of temperature (20-28 °C) and gel concentration (5-6 vol %). Measured times for full strength recovery were an order of magnitude greater than characteristic relaxation times of the system. The Arrhenius activation energy for post-fracture strength recovery was found to be greater than the activation energy associated with stress relaxation, most likely due to the entropic barrier related to the healing mechanism of dangling chain reassociation with network junctions.

SELECTION OF CITATIONS
SEARCH DETAIL
...