Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
iScience ; 27(5): 109779, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38736550

ABSTRACT

Metabolic heterogeneity is a determinant of immune cell function. The normal physiological metabolic reprogramming of pregnancy that ensures the fuel requirements of mother and baby are met, might also underpin changes in immunity that occur with pregnancy and manifest as altered responses to pathogens and changes to autoimmune disease symptoms. Using peripheral blood from pregnant women at term, we reveal that monocytes lose M2-like and gain M1-like properties accompanied by reductions in mitochondrial mass, maximal respiration, and cardiolipin content in pregnancy; glycolysis is unperturbed. We establish that muramyl dipeptide (MDP)-stimulated cytokine production relies on oxidative metabolism, then show in pregnancy reduced cytokine production in response to MDP but not LPS. Overall, mitochondrially centered metabolic capabilities of late gestation monocytes are down-regulated revealing natural plasticity in monocyte phenotype and function that could reveal targets for improving pregnancy outcomes but also yield alternative therapeutic approaches to diverse metabolic and/or immune-mediated diseases beyond pregnancy.

2.
Mol Metab ; 81: 101900, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354856

ABSTRACT

The pyruvate transporter MPC1 (mitochondrial pyruvate carrier 1) acts as a tumour-suppressor, loss of which correlates with a pro-tumorigenic phenotype and poor survival in several tumour types. In high-grade serous ovarian cancers (HGSOC), patients display copy number loss of MPC1 in around 78% of cases and reduced MPC1 mRNA expression. To explore the metabolic effect of reduced expression, we demonstrate that depleting MPC1 in HGSOC cell lines drives expression of key proline biosynthetic genes; PYCR1, PYCR2 and PYCR3, and biosynthesis of proline. We show that altered proline metabolism underpins cancer cell proliferation, reactive oxygen species (ROS) production, and type I and type VI collagen formation in ovarian cancer cells. Furthermore, exploring The Cancer Genome Atlas, we discovered the PYCR3 isozyme to be highly expressed in a third of HGSOC patients, which was associated with more aggressive disease and diagnosis at a younger age. Taken together, our study highlights that targeting proline metabolism is a potential therapeutic avenue for the treatment of HGSOC.


Subject(s)
Monocarboxylic Acid Transporters , Ovarian Neoplasms , Female , Humans , Cell Proliferation , Collagen , Monocarboxylic Acid Transporters/genetics , Ovarian Neoplasms/genetics , Proline
3.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334621

ABSTRACT

Interleukin-6 (IL-6) superfamily cytokines play critical roles during human pregnancy by promoting trophoblast differentiation, invasion, and endocrine function, and maintaining embryo immunotolerance and protection. In contrast, the unbalanced activity of pro-inflammatory factors such as interferon gamma (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) at the maternal-fetal interface have detrimental effects on trophoblast function and differentiation. This study demonstrates how the IL-6 cytokine family member oncostatin M (OSM) and STAT3 activation regulate trophoblast fusion and endocrine function in response to pro-inflammatory stress induced by IFNγ and GM-CSF. Using human cytotrophoblast-like BeWo (CT/BW) cells, differentiated in villous syncytiotrophoblast (VST/BW) cells, we show that beta-human chorionic gonadotrophin (ßhCG) production and cell fusion process are affected in response to IFNγ or GM-CSF. However, those effects are abrogated with OSM by modulating the activation of IFNγ-STAT1 and GM-CSF-STAT5 signaling pathways. OSM stimulation enhances the expression of STAT3, the phosphorylation of STAT3 and SMAD2, and the induction of negative regulators of inflammation (e.g., IL-10 and TGFß1) and cytokine signaling (e.g., SOCS1 and SOCS3). Using STAT3-deficient VST/BW cells, we show that STAT3 expression is required for OSM to regulate the effects of IFNγ in ßhCG and E-cadherin expression. In contrast, OSM retains its modulatory effect on GM-CSF-STAT5 pathway activation even in STAT3-deficient VST/BW cells, suggesting that OSM uses STAT3-dependent and -independent mechanisms to modulate the activation of pro-inflammatory pathways IFNγ-STAT1 and GM-CSF-STAT5. Moreover, STAT3 deficiency in VST/BW cells leads to the production of both a large amount of ßhCG and an enhanced expression of activated STAT5 induced by GM-CSF, independently of OSM, suggesting a key role for STAT3 in ßhCG production and trophoblast differentiation through STAT5 modulation. In conclusion, our study describes for the first time the critical role played by OSM and STAT3 signaling pathways to preserve and regulate trophoblast biological functions during inflammatory stress.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Interferon-gamma , Pregnancy , Female , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Oncostatin M/pharmacology , Oncostatin M/metabolism , STAT5 Transcription Factor/metabolism , Interleukin-6/metabolism , Signal Transduction , Trophoblasts/metabolism , STAT3 Transcription Factor/metabolism
4.
Open Biol ; 13(5): 220313, 2023 05.
Article in English | MEDLINE | ID: mdl-37132223

ABSTRACT

Most biologically active oxysterols have a 3ß-hydroxy-5-ene function in the ring system with an additional site of oxidation at C-7 or on the side-chain. In blood plasma oxysterols with a 7α-hydroxy group are also observed with the alternative 3-oxo-4-ene function in the ring system formed by ubiquitously expressed 3ß-hydroxy-Δ5-C27-steroid oxidoreductase Δ5-isomerase, HSD3B7. However, oxysterols without a 7α-hydroxy group are not substrates for HSD3B7 and are not usually observed with the 3-oxo-4-ene function. Here we report the unexpected identification of oxysterols in plasma derived from umbilical cord blood and blood from pregnant women taken before delivery at 37+ weeks of gestation, of side-chain oxysterols with a 3-oxo-4-ene function but no 7α-hydroxy group. These 3-oxo-4-ene oxysterols were also identified in placenta, leading to the hypothesis that they may be formed by a previously unrecognized 3ß-hydroxy-Δ5-C27-steroid oxidoreductase Δ5-isomerase activity of HSD3B1, an enzyme which is highly expressed in placenta. Proof-of-principle experiments confirmed that HSD3B1 has this activity. We speculate that HSD3B1 in placenta is the source of the unexpected 3-oxo-4-ene oxysterols in cord and pregnant women's plasma and may have a role in controlling the abundance of biologically active oxysterols delivered to the fetus.


Subject(s)
Oxysterols , Female , Humans , Pregnancy , Isomerases , Multienzyme Complexes , Placenta , Steroids
5.
Cell Metab ; 35(7): 1132-1146.e9, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37230079

ABSTRACT

Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Autoimmunity , T-Lymphocytes , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Autoimmune Diseases/drug therapy , Hypoglycemic Agents/pharmacology
6.
Mol Omics ; 19(4): 340-350, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36883215

ABSTRACT

The lipid environment changes throughout pregnancy both physiologically with emergent insulin resistance and pathologically e.g., gestational diabetes mellitus (GDM). Novel mass spectrometry (MS) techniques applied to minimally processed blood might lend themselves to monitoring changing lipid profiles to inform care decisions across pregnancy. In this study we use an intact-sandwich, MALDI-ToF MS method to identify phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) species and calculate their ratio as an indicator of inflammation. Plasma and sera were prepared from venous blood of non-pregnant women (aged 18-40) and pregnant women at 16 weeks, 28 weeks (including GDM-positive women), and 37+ weeks (term) of gestation alongside umbilical cord blood (UCB). Women with a normal menstrual cycle and age-matched men provided finger-prick derived capillary sera at 6 time-points over a month. Serum rather than plasma was preferable for PC/LPC measurement. As pregnancy progresses, an anti-inflammatory phenotype dominates the maternal circulation, evidenced by increasing PC/LPC ratio. In contrast, the PC/LPC ratio of UCB was aligned to that of non-pregnant donors. BMI had no significant effect on the PC/LPC ratio, but GDM-complicated pregnancies had significantly lower PC/LPC at 16 weeks of gestation. To further translate the use of the PC/LPC ratio clinically, the utility of finger-prick blood was evaluated; no significant difference between capillary versus venous serum was found and we revealed the PC/LPC ratio oscillates with the menstrual cycle. Overall, we show that the PC/LPC ratio can be measured simply in human serum and has the potential to be used as a time-efficient and less invasive biomarker of (mal)adaptative inflammation.


Subject(s)
Inflammation , Phosphatidylcholines , Male , Humans , Female , Pregnancy , Phosphatidylcholines/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Biomarkers , Lysophosphatidylcholines
7.
Front Endocrinol (Lausanne) ; 13: 1031013, 2022.
Article in English | MEDLINE | ID: mdl-36440193

ABSTRACT

The aim of this study was to identify oxysterols and any down-stream metabolites in placenta, umbilical cord blood plasma, maternal plasma and amniotic fluid to enhance our knowledge of the involvement of these molecules in pregnancy. We confirm the identification of 20S-hydroxycholesterol in human placenta, previously reported in a single publication, and propose a pathway from 22R-hydroxycholesterol to a C27 bile acid of probable structure 3ß,20R,22R-trihydroxycholest-5-en-(25R)26-oic acid. The pathway is evident not only in placenta, but pathway intermediates are also found in umbilical cord plasma, maternal plasma and amniotic fluid but not non-pregnant women.


Subject(s)
Oxysterols , Female , Humans , Pregnancy , Chromatography, Liquid , Mass Spectrometry , Amniotic Fluid/metabolism , Fetal Blood/metabolism
8.
Clin Exp Immunol ; 208(1): 114-128, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35304898

ABSTRACT

Healthy pregnancy is accompanied by various immunological and metabolic adaptations. Maternal obesity has been implicated in adverse pregnancy outcomes such as miscarriage, preeclampsia, and gestational diabetes mellitus (GDM), while posing a risk to the neonate. There is a lack of knowledge surrounding obesity and the maternal immune system. The objective of this study was to consider if immunological changes in pregnancy are influenced by maternal obesity. Peripheral blood was collected from fasted GDM-negative pregnant women at 26-28 weeks of gestation. Analysis was done using immunoassay, flow cytometry, bioenergetics analysis, and cell culture. The plasma profile was significantly altered with increasing BMI, specifically leptin (r = 0.7635), MCP-1 (r = 0.3024), and IL-6 (r = 0.4985). Circulating leukocyte populations were also affected with changes in the relative abundance of intermediate monocytes (r = -0.2394), CD4:CD8 T-cell ratios (r = 0.2789), and NKT cells (r = -0.2842). Monocytes analysed in more detail revealed elevated CCR2 expression and decreased mitochondrial content with increased BMI. However, LPS-stimulated cytokine production and bioenergetic profile of PBMCs were not affected by maternal BMI. The Th profile skews towards Th17 with increasing BMI; Th2 (r = -0.3202) and Th9 (r = -0.3205) cells were diminished in maternal obesity, and CytoStim™-stimulation exacerbates IL-6 (r = 0.4166), IL-17A (r = 0.2753), IL-17F (r = 0.2973), and IL-22 (r = 0.2257) production with BMI, while decreasing IL-4 (r = -0.2806). Maternal obesity during pregnancy creates an inflammatory microenvironment. Successful pregnancy requires Th2-biased responses yet increasing maternal BMI favours a Th17 response that could be detrimental to pregnancy. Further research should investigate key populations of cells identified here to further understand the immunological challenges that beset pregnant women with obesity.


Subject(s)
Diabetes, Gestational , Obesity, Maternal , Infant, Newborn , Female , Pregnancy , Humans , Body Mass Index , Obesity, Maternal/complications , Interleukin-6 , Obesity
9.
Clin Exp Immunol ; 208(2): 132-146, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35348641

ABSTRACT

Mandatory maternal metabolic and immunological changes are essential to pregnancy success. Parallel changes in metabolism and immune function make immunometabolism an attractive mechanism to enable dynamic immune adaptation during pregnancy. Immunometabolism is a burgeoning field with the underlying principle being that cellular metabolism underpins immune cell function. With whole body changes to the metabolism of carbohydrates, protein and lipids well recognised to occur in pregnancy and our growing understanding of immunometabolism as a determinant of immunoinflammatory effector responses, it would seem reasonable to expect immune plasticity during pregnancy to be linked to changes in the availability and handling of multiple nutrient energy sources by immune cells. While studies of immunometabolism in pregnancy are only just beginning, the recognised bi-directional interaction between metabolism and immune function in the metabolic disorder obesity might provide some of the earliest insights into the role of immunometabolism in immune plasticity in pregnancy. Characterised by chronic low-grade inflammation including in pregnant women, obesity is associated with numerous adverse outcomes during pregnancy and beyond for both mother and child. Concurrent changes in metabolism and immunoinflammation are consistently described but any causative link is not well established. Here we provide an overview of the metabolic and immunological changes that occur in pregnancy and how these might contribute to healthy versus adverse pregnancy outcomes with special consideration of possible interactions with obesity.


Subject(s)
Inflammation , Obesity , Female , Humans , Pregnancy
11.
BMJ Open ; 12(9): e059813, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36691218

ABSTRACT

INTRODUCTION: Shielding aimed to protect those predicted to be at highest risk from COVID-19 and was uniquely implemented in the UK during the COVID-19 pandemic. Clinically extremely vulnerable people identified through algorithms and screening of routine National Health Service (NHS) data were individually and strongly advised to stay at home and strictly self-isolate even from others in their household. This study will generate a logic model of the intervention and evaluate the effects and costs of shielding to inform policy development and delivery during future pandemics. METHODS AND ANALYSIS: This is a quasiexperimental study undertaken in Wales where records for people who were identified for shielding were already anonymously linked into integrated data systems for public health decision-making. We will: interview policy-makers to understand rationale for shielding advice to inform analysis and interpretation of results; use anonymised individual-level data to select people identified for shielding advice in March 2020 and a matched cohort, from routine electronic health data sources, to compare outcomes; survey a stratified random sample of each group about activities and quality of life at 12 months; use routine and newly collected blood data to assess immunity; interview people who were identified for shielding and their carers and NHS staff who delivered healthcare during shielding, to explore compliance and experiences; collect healthcare resource use data to calculate implementation costs and cost-consequences. Our team includes people who were shielding, who used their experience to help design and deliver this study. ETHICS AND DISSEMINATION: The study has received approval from the Newcastle North Tyneside 2 Research Ethics Committee (IRAS 295050). We will disseminate results directly to UK government policy-makers, publish in peer-reviewed journals, present at scientific and policy conferences and share accessible summaries of results online and through public and patient networks.


Subject(s)
COVID-19 , State Medicine , Humans , Wales , Quality of Life , Pandemics , Patient Compliance
12.
Immunometabolism ; 3(4): e210031, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34729242

ABSTRACT

Pregnancy is characterised by metabolic changes that occur to support the growth and development of the fetus over the course of gestation. These metabolic changes can be classified into two distinct phases: an initial anabolic phase to prepare an adequate store of substrates and energy which are then broken down and used during a catabolic phase to meet the energetic demands of the mother, placenta and fetus. Dynamic readjustment of immune homeostasis is also a feature of pregnancy and is likely linked to the changes in energy substrate utilisation at this time. As cellular metabolism is increasingly recognised as a key determinant of immune cell phenotype and function, we consider how changes in maternal metabolism might contribute to T cell plasticity during pregnancy.

13.
Mar Drugs ; 19(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34436244

ABSTRACT

Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI). However, mammalian sourced collagens pose safety risks such as bovine spongiform encephalopathy, transmissible spongiform encephalopathy and possible transmission of viral vectors. This study characterised a non-mammalian jellyfish (Rhizostoma pulmo) collagen as an alternative, safer source in scaffold production for clinical use. Jellyfish collagen demonstrated comparable scaffold structural properties and stability when compared to mammalian collagen. Jellyfish collagen also displayed comparable immunogenic responses (platelet and leukocyte activation/cell death) and cytokine release profile in comparison to mammalian collagen in vitro. Further histological analysis of jellyfish collagen revealed bovine chondroprogenitor cell invasion and proliferation in the scaffold structures, where the scaffold supported enhanced chondrogenesis in the presence of TGFß1. This study highlights the potential of jellyfish collagen as a safe and biocompatible biomaterial for both OA repair and further regenerative medicine applications.


Subject(s)
Aquatic Organisms/chemistry , Biocompatible Materials/chemistry , Chondrogenesis/drug effects , Collagen/chemistry , Osteoarthritis/therapy , Scyphozoa , Tissue Scaffolds/chemistry , Animals , Collagen/pharmacology , Humans , Tissue Engineering
14.
Arch Toxicol ; 95(9): 3101-3115, 2021 09.
Article in English | MEDLINE | ID: mdl-34245348

ABSTRACT

The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation. Images were captured for the cytokinesis-block micronucleus (CBMN) assay across three laboratories using methyl methanesulphonate (1.25-5.0 µg/mL) and/or carbendazim (0.8-1.6 µg/mL) exposures to TK6 cells. Human-scored image sets were assembled and used to train and test the classification abilities of the "DeepFlow" neural network in both intra- and inter-laboratory contexts. Harnessing image diversity across laboratories yielded a network able to score unseen data from an entirely new laboratory without any user configuration. Image classification accuracies of 98%, 95%, 82% and 85% were achieved for 'mononucleates', 'binucleates', 'mononucleates with MN' and 'binucleates with MN', respectively. Successful classifications of 'trinucleates' (90%) and 'tetranucleates' (88%) in addition to 'other or unscorable' phenotypes (96%) were also achieved. Attempts to classify extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less successful (≤ 57%). Benchmark dose analyses of human or automatically scored micronucleus frequency data yielded quantitation of the same equipotent concentration regardless of scoring method. We conclude that this automated approach offers significant potential to broaden the practical utility of the CBMN method across industry, research and clinical domains. We share our strategy using openly-accessible frameworks.


Subject(s)
Deep Learning , Flow Cytometry/methods , Micronucleus Tests/methods , Mutagens/toxicity , Automation, Laboratory , Benzimidazoles/administration & dosage , Benzimidazoles/toxicity , Carbamates/administration & dosage , Carbamates/toxicity , Cell Line , Cytokinesis/drug effects , DNA Damage/drug effects , Dose-Response Relationship, Drug , Humans , Methyl Methanesulfonate/administration & dosage , Methyl Methanesulfonate/toxicity , Mutagens/administration & dosage
15.
Pediatr Allergy Immunol ; 32(8): 1616-1628, 2021 11.
Article in English | MEDLINE | ID: mdl-34170575

ABSTRACT

Immune responses of neonates differ markedly to those of adults, with skewed cytokine phenotypes, reduced inflammatory properties and drastically diminished memory function. Recent research efforts have started to unravel the role of cellular metabolism in determining immune cell fate and function. For studies in humans, much of the work on metabolic mechanisms underpinning innate and adaptive immune responses by different haematopoietic cell types is in adults. Studies investigating the contribution of metabolic adaptation in the unique setting of early life are just emerging, and much more work is needed to elucidate the contribution of metabolism to neonatal immune responses. Here, we discuss our current understanding of neonatal immune responses, examine some of the latest developments in neonatal immunometabolism and consider the possible role of altered metabolism to the distinctive immune phenotype of the neonate. Understanding the role of metabolism in regulating immune function at this critical stage in life has direct benefit for the child by affording opportunities to maximize immediate and long-term health. Additionally, gaining insight into the diversity of human immune function and naturally evolved immunometabolic strategies that modulate immune function could be harnessed for a wide range of opportunities including new therapeutic approaches.


Subject(s)
Cytokines , Immunity , Animals , Humans , Infant , Infant, Newborn
16.
Nat Commun ; 12(1): 1209, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619282

ABSTRACT

Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1ß after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.


Subject(s)
Fructose/pharmacology , Glutamine/metabolism , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Acids/metabolism , Animals , Citric Acid Cycle/drug effects , Cytokines/metabolism , Disease Models, Animal , Glucose/pharmacology , Glycolysis/drug effects , Isotope Labeling , Macrophages/drug effects , Macrophages/metabolism , Metabolic Flux Analysis , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/pathology , Monocytes/drug effects , Monocytes/metabolism , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Phenotype , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
18.
Nutrients ; 12(9)2020 Aug 23.
Article in English | MEDLINE | ID: mdl-32842513

ABSTRACT

There are limited proven therapeutic options for the prevention and treatment of COVID-19. The role of vitamin and mineral supplementation or "immunonutrition" has previously been explored in a number of clinical trials in intensive care settings, and there are several hypotheses to support their routine use. The aim of this narrative review was to investigate whether vitamin supplementation is beneficial in COVID-19. A systematic search strategy with a narrative literature summary was designed, using the Medline, EMBASE, Cochrane Trials Register, WHO International Clinical Trial Registry, and Nexis media databases. The immune-mediating, antioxidant and antimicrobial roles of vitamins A to E were explored and their potential role in the fight against COVID-19 was evaluated. The major topics extracted for narrative synthesis were physiological and immunological roles of each vitamin, their role in respiratory infections, acute respiratory distress syndrome (ARDS), and COVID-19. Vitamins A to E highlighted potentially beneficial roles in the fight against COVID-19 via antioxidant effects, immunomodulation, enhancing natural barriers, and local paracrine signaling. Level 1 and 2 evidence supports the use of thiamine, vitamin C, and vitamin D in COVID-like respiratory diseases, ARDS, and sepsis. Although there are currently no published clinical trials due to the novelty of SARS-CoV-2 infection, there is pathophysiologic rationale for exploring the use of vitamins in this global pandemic, supported by early anecdotal reports from international groups. The final outcomes of ongoing trials of vitamin supplementation are awaited with interest.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Dietary Supplements , Pneumonia, Viral/therapy , Vitamins/therapeutic use , Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Thiamine/therapeutic use , Vitamin A/therapeutic use , Vitamin D/therapeutic use , Vitamin E/therapeutic use , COVID-19 Drug Treatment
19.
J Biophotonics ; 13(9): e202000118, 2020 09.
Article in English | MEDLINE | ID: mdl-32506784

ABSTRACT

In recent years, the diagnosis of brain tumors has been investigated with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy on dried human serum samples to eliminate spectral interferences of the water component, with promising results. This research evaluates ATR-FTIR on both liquid and air-dried samples to investigate "digital drying" as an alternative approach for the analysis of spectra obtained from liquid samples. Digital drying approaches, consisting of water subtraction and least-squares method, have demonstrated a greater random forest (RF) classification performance than the air-dried spectra approach when discriminating cancer vs control samples, reaching sensitivity values higher than 93.0% and specificity values higher than 83.0%. Moreover, quantum cascade laser infrared (QCL-IR) based spectroscopic imaging is utilized on liquid samples to assess the implications of a deep-penetration light source on disease classification. The RF classification of QCL-IR data has provided sensitivity and specificity amounting to 85.1% and 75.3% respectively.


Subject(s)
Water , Humans , Least-Squares Analysis , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared
20.
Thromb Res ; 193: 25-30, 2020 09.
Article in English | MEDLINE | ID: mdl-32505081

ABSTRACT

INTRODUCTION: Thrombosis is a severe and frequent complication of heparin-induced thrombocytopenia (HIT). However, there is currently no knowledge of the effects of HIT-like antibodies on the resulting microstructure of the formed clot, despite such information being linked to thrombotic events. We evaluate the effect of the addition of pathogenic HIT-like antibodies to blood on the resulting microstructure of the formed clot. MATERIALS AND METHODS: Pathogenic HIT-like antibodies (KKO) and control antibodies (RTO) were added to samples of whole blood containing Unfractionated Heparin and Platelet Factor 4. The formed clot microstructure was investigated by rheological measurements (fractal dimension; df) and scanning electron microscopy (SEM), and platelet activation was measured by flow cytometry. RESULTS AND CONCLUSIONS: Our results revealed striking effects of KKO on clot microstructure. A significant difference in df was found between samples containing KKO (df = 1.80) versus RTO (df = 1.74; p < 0.0001). This increase in df was often associated with an increase in activated platelets. SEM images of the clots formed with KKO showed a network consisting of a highly branched and compact arrangement of thin fibrin fibres, typically found in thrombotic disease. This is the first study to identify significant changes in clot microstructure formed in blood containing HIT-like antibodies. These observed alterations in clot microstructure can be potentially exploited as a much-needed biomarker for the detection, management and monitoring of HIT-associated thrombosis.


Subject(s)
Thrombocytopenia , Thrombosis , Fibrin , Heparin/adverse effects , Humans , Platelet Factor 4 , Thrombocytopenia/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...