Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(17): 7692-7704, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38608180

ABSTRACT

Inspired by the potential of alkoxides as weak-field ligands and their ability to bridge, we report herein a series of high-spin iron complexes supported by a bis-alkoxide framework PhDbf. A diiron complex [Fe2(PhDbf)2] (1a) is obtained upon metalation of the ligand, whereas addition of substituted pyridines affords five-coordinate mononuclear iron complexes [(R-Py)2Fe(PhDbf)] (2a-4a, R = H, p-tBu, p-CF3). The potential for nuclearity control of the metal complexes via auxiliary ligands is highlighted by the formation of asymmetric diiron species [(p-CF3-Py)Fe2(PhDbf)2] (5a) and [(m-CF3-Py)Fe2(PhDbf)2] (6a) with trifluoromethyl substituted pyridines, while electron-rich pyridines only produced monomeric species. Electronic properties analysis via UV-vis, electron paramagnetic resonance, 57Fe Mössbauer spectroscopy, and time-dependent density functional theory, along with redox capabilities of these complexes are reported to illustrate the effect of nuclearity on reactivity and the potential of these complexes to access higher oxidation states relevant in oxidative chemistry. Species 1a-5a, [(THF)2Fe(PhDbf)][PF6] (7), [PyFe(PhDbf)Cl] (2b), and [Py2Fe(PhDbf)][PF6] (2c) were characterized via SCXRD. Indirect evidence for the formation of dimeric Fe(III) species (1b, 5b, and 6b) is discussed.

2.
J Chem Phys ; 159(19)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37982482

ABSTRACT

The ability to synthetically tune the ligand frameworks of redox-active molecules is of critical importance to the economy of solar fuels because manipulating their redox properties can afford control over the operating potentials of sustained electrocatalytic or photoelectrocatalytic processes. The electronic and steric properties of 2,2':6',2″-terpyridine (Terpy) ligand frameworks can be tuned by functional group substitution on ligand backbones, and these correlate strongly to their Hammett parameters. The synthesis of a new series of tridentate meridional ligands of 2,4,6-trisubstituted pyridines that engineers the ability to finely tune the redox potentials of cobalt complexes to more positive potentials than that of their Terpy analogs is achieved by aryl-functionalizing at the four-position and by including isoquinoline at the two- and six-positions of pyridine (Aryl-DiQ). Their cobalt complex syntheses, their electronic properties, and their catalytic activity for carbon dioxide (CO2) reduction are reported and compared to their Terpy analogs. The cobalt derivatives generally experience a positive shift in their redox features relative to the Terpy-based analogs, covering a complementary potential range. Although those evaluated fail to produce any quantifiable products for the reduction of CO2 and suffer from long-term instability, these results suggest possible alternate strategies for stabilizing these compounds during catalysis. We speculate that lower equilibrium association constants to the cobalt center are intrinsic to these ligands, which originate from a steric interaction between protons on the pyridine and isoquinoline moieties. Nevertheless, the new Aryl-DiQ ligand framework has been engineered to selectively tune homoleptic cobalt complexes' redox potentials.

SELECTION OF CITATIONS
SEARCH DETAIL
...