Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Environ Geochem Health ; 32(6): 529-52, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20524052

ABSTRACT

In the Lavrion urban area study, Hellas, a five-step sequential extraction method was applied on samples of 'soil' (n = 224), affected by long-term mining and metallurgical activities, and house dust (n = 127), for the purpose of studying the potential bioaccessibility of lead and other metals to humans. In this paper, the Pb concentrations in soil and house dust samples are discussed, together with those in rocks and children's blood. Lead is mainly associated with the carbonate, Fe-Mn oxides and residual fractions in soil and house dust. Considering the very low pH of gastric fluids (1-3), a high amount of metals, present in soil (810-152,000 mg/kg Pb) and house dust (418-18,600 mg/kg Pb), could be potentially bioaccessible. Consequently, children in the neighbourhoods with a large amount of metallurgical processing wastes have high blood-Pb concentrations (5.98-60.49 µg/100 ml; median 17.83 µg/100 ml; n = 235). It is concluded that the Lavrion urban and sub-urban environment is extremely hazardous to human health, and the Hellenic State authorities should urgently tackle this health-related hazard in order to improve the living conditions of local residents.


Subject(s)
Dust/analysis , Environmental Monitoring , Environmental Pollutants/analysis , Lead/analysis , Soil/chemistry , Carbonates/analysis , Carbonates/chemistry , Child , Environmental Pollutants/chemistry , Environmental Pollutants/pharmacokinetics , Greece , Humans , Hydrogen-Ion Concentration , Lead/blood , Lead/chemistry , Metallurgy , Mining , Risk Assessment
3.
Environ Geochem Health ; 30(6): 549-63, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18563590

ABSTRACT

Thirty-two brownfield sites from the city of Wolverhampton were selected from those with a former industrial use, wasteland or areas adjacent to industrial processes. Samples (<2 mm powdered soil fraction) were analysed, using inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 20 elements. Loss on ignition and pH were also determined. A five-step chemical sequential extraction technique was carried out. Single leach extraction with 0.12 M hydrochloric acid of Pb, Cu and Zn in soil was determined as a first approximation of the bioavailability in the human stomach. Some of the sites were found to have high concentrations of the potentially toxic elements Pb, Zn, Cu and Ni. The partitioning of metals showed a high variability, however a number of trends were determined. The majority of Zn was partitioned into the least chemically stable phases (steps 1, 2 and 3). The majority of Cu was associated with the organic phase (step 4) and the majority of Ni was fractionated into the residue phase (step 5). The majority of Pb was associated with the residue fraction (step 5) followed by Fe-Mn oxide fraction (step 3). The variability reflects the heterogeneous and complex nature of metal speciation in urban soils with varied historic histories. There was a strong inverse linear relationship between the metals Ni, Zn and Pb in the readily exchangeable phase (step 1) and soil pH, significant at P < 0.01 level. There was a significant increase (P < 0.05) in the partitioning of Cu, Ni and Zn into step 4 (the organic phase) in soils with a higher organic carbon content (estimated by loss on ignition). Copper was highly partitioned into step 4 as it has a strong association with organics in soil but this phase was not important for the partitioning of Ni or Zn. The fractionation of Ni, Cu and Zn increased significantly in step 3 when the total metal concentration increases (P < 0.01). The Fe-Mn oxide fraction becomes more important in soils elevated in these metals, possibly due to the scavenging of metals by oxides. Cu and Pb extracted by HCl was statistically similar to the sum of the metals in steps 1 to 4 (P < 0.01) and HCl available Zn was statistically similar to the sum of Zn in steps 1 to 3 (P < 0.01). Step 4 (the organic phase) was not an important phase for Zn, so it was concluded that any Cu, Zn and Pb present in soil in a nonresidue phase would be potentially available for uptake into the human system once soil has been ingested.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Cities , Copper/analysis , Copper/chemistry , Copper/pharmacokinetics , Gastric Mucosa/metabolism , Humans , Hydrogen-Ion Concentration , Lead/analysis , Lead/chemistry , Lead/pharmacokinetics , Metals, Heavy/chemistry , Metals, Heavy/pharmacokinetics , Nickel/analysis , Nickel/chemistry , Nickel/pharmacokinetics , Soil Pollutants/chemistry , Soil Pollutants/pharmacokinetics , United Kingdom , Zinc/analysis , Zinc/chemistry , Zinc/pharmacokinetics
4.
Sci Total Environ ; 393(1): 96-110, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18222529

ABSTRACT

Concern about increasing levels of trace elements in the environment has led to the development and implementation of a global programme to determine the current baseline levels of these chemicals in the Earth's surface. The FORum of European Geological Surveys (FOREGS) has recently published a geochemical database for Europe, while progress on similar databases is continuing in other major regions of the world. The FOREGS database comprises multimedia samples collected at a resolution of approximately 72x72 km from 26 European countries. This enables the investigation of the factors governing geochemical variation on a continental scale, potentially allowing contributions of natural processes to be appreciated prior to setting environmental quality standards. This paper investigates the variation in European topsoil geochemistry using factorial kriging analysis, which performs principal components analysis at different spatial scales. The results are interpreted with the aid of a GIS database. Four spatial scales were identified: a nugget component representing variation over a range less than the sampling density; a 'short' scale component with a range of 296 km; an 'intermediate' scale component (875 km); and a 'long' scale component (1750 km). The first three principal components (PCs) of the nugget covariance matrix explained 22.2% of the overall variance, representing local variation in geology, land use, weathering and organic matter content. The first two PCs of the short range structure explained 12.6% of the variance, representing variation according to the major structural divisions of Europe, and to carbonate content. The first PC of the intermediate structure explained 7.2% of the variance and was found to relate to glacial history and Quaternary deposition. Finally, the first three PCs of the long range structure explained 29.6% of the variance and represented variation due to mineralisation, soil texture, climate and possibly anthropogenic contamination.


Subject(s)
Databases, Factual , Environmental Monitoring/statistics & numerical data , Soil/analysis , Data Interpretation, Statistical , Europe , Geological Phenomena , Geology , Linear Models , Metals/analysis , Principal Component Analysis , Soil Pollutants/analysis
5.
Sci Total Environ ; 356(1-3): 45-61, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-15913711

ABSTRACT

The urban environment quality is of vital importance as the majority of people now live in cities. Due to the continuous urbanisation and industrialisation in many parts of the world, metals are continuously emitted into the terrestrial environment and pose a great threat on human health. An extensive survey was conducted in the highly urbanised and commercialised Hong Kong Island area (80.3 km2) of Hong Kong using a systematic sampling strategy of five soil samples per km2 in urban areas and two samples per km2 in the suburban and country park sites (0-15 cm). The analytical results indicated that the surface soils in urban and suburban areas are enriched with metals, such as Cu, Pb, and Zn. The Pb concentration in the urban soils was found to exceed the Dutch target value. The statistical analyses using principal component analysis (PCA) and cluster analysis (CA) showed distinctly different associations among trace metals and the major elements (Al, Ca, Fe, Mg, Mn) in the urban, suburban, and country park soils. Soil pollution maps of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in the surface soils were produced based on geographical information system (GIS) technology. The hot-spot areas of metal contamination were mainly concentrated in the northern and western parts of Hong Kong Island, and closely related to high traffic conditions. The Pb isotopic composition of the urban, suburban, and country park soils showed that vehicular emissions were the major anthropogenic sources for Pb. The 206Pb/207Pb and 208Pb/207Pb ratios in soils decreased as Pb concentrations increased in a polynomial line (degree=2).


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/standards , Hong Kong , Lead/analysis , Multivariate Analysis , Rural Health , Suburban Health , Urban Health
6.
Environ Pollut ; 142(1): 1-16, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16297517

ABSTRACT

As the world's urban population continues to grow, it becomes increasingly imperative to understand the dynamic interactions between human activities and the urban environment. The development of urban environmental geochemistry has yielded a significant volume of scientific information about geochemical phenomena found uniquely in the urban environment, such as the distribution, dispersion, and geochemical characteristics of some toxic and potentially toxic trace metals. The aim of this paper is to provide an overview of the development of urban environmental geochemistry as a field of scientific study and highlight major transitions during the course of its development from its establishment to the major scientific interests in the field today. An extensive literature review is also conducted of trace metal contamination of the urban terrestrial environment, in particular of urban soils, in which the uniqueness of the urban environment and its influences on trace metal contamination are elaborated. Potential areas of future development in urban environmental geochemistry are identified and discussed.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution , Metals/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Cities , Hazardous Waste , Humans , Urban Health/trends
7.
Sci Prog ; 89(Pt 2): 71-138, 2006.
Article in English | MEDLINE | ID: mdl-17240694

ABSTRACT

The environmental, social and economic problems associated with abandoned mine sites are serious and global. Environmental damage arising from polluted waters and dispersal of contaminated waste is a feature characteristic of many old mines in North America, Australia, Europe and elsewhere. Today, because of the efficiency of mining operations and legal requirements in many countries for prevention of environmental damage from mining operations, the release of metals to the environment from modern mining is low. However, many mineralized areas that were extensively worked in the 18th and 19th centuries and left abandoned after mining had ceased, have left a legacy of metal contaminated land. Unlike organic chemicals and plastics, metals cannot be degraded chemically or biologically into non-toxic and environmentally neutral constituents. Thus sites contaminated with toxic metals present a particular challenge for remediation. Soil remediation has been the subject of a significant amount of research work in the past decade; this has resulted in a number of remediation options currently available or being developed. Remediation strategies for metal/metalloid contaminated historical mining sites are reviewed and summarized in this article. It focuses on the current applications of in situ remediation with the use of soil amendments (adsorption and precipitation based methods are discussed) and phytoremediation (in situ plant based technology for environmental clean up and restoration). These are promising alternative technologies to traditional options of excavation and ex situ treatment, offering an advantage of being non-invasive and low cost. In particular, they have been shown to be effective in remediation of mining and smelting contaminated sites, although the long-term durability of these treatments cannot be predicted.


Subject(s)
Environmental Restoration and Remediation , Metallurgy , Metals , Mining , Soil Pollutants
8.
Environ Health Perspect ; 112(2): 215-21, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14754576

ABSTRACT

We performed a risk assessment of metal exposure to population subgroups living on, and growing food on, urban sites. We modeled uptake of cadmium, copper, nickel, lead, and zinc for a selection of commonly grown allotment and garden vegetables. Generalized linear cross-validation showed that final predictions of Cd, Cu, Ni, and Zn content of food crops were satisfactory, whereas the Pb uptake models were less robust. We used predicted concentrations of metals in the vegetables to assess the risk of exposure to human populations from homegrown food sources. Risks from other exposure pathways (consumption of commercially produced foodstuffs, dust inhalation, and soil ingestion) were also estimated. These models were applied to a geochemical database of an urban conurbation in the West Midlands, United Kingdom. Risk, defined as a "hazard index," was mapped for three population subgroups: average person, highly exposed person, and the highly exposed infant (assumed to be a 2-year-old child). The results showed that food grown on 92% of the urban area presented minimal risk to the average person subgroup. However, more vulnerable population subgroups (highly exposed person and the highly exposed infant) were subject to hazard index values greater than unity. This study highlights the importance of site-specific risk assessment and the "suitable for use" approach to urban redevelopment.


Subject(s)
Food Contamination , Inhalation Exposure , Metals, Heavy/pharmacokinetics , Soil Pollutants/pharmacokinetics , Vegetables/chemistry , Dust , Humans , Regression Analysis , Risk Assessment , Urban Population
9.
Environ Pollut ; 129(1): 113-24, 2004 May.
Article in English | MEDLINE | ID: mdl-14749075

ABSTRACT

The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km(2)) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km(2). Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins.


Subject(s)
Geographic Information Systems , Metals, Heavy/analysis , Soil Pollutants/analysis , Automobiles , City Planning/methods , Cluster Analysis , Environmental Monitoring/methods , Hong Kong , Industry , Isotopes/analysis , Principal Component Analysis/methods
10.
Environ Geochem Health ; 25(1): 1-8, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12901072

ABSTRACT

The extreme density of population of Gibraltar, situated at the southern tip of Spain, exerts considerable pressure on land use and thus future planning is of utmost importance. An initial reconnaissance soil geochemical survey of Gibraltar was based on 120 surface samples (0-15 cm) taken from a wide range of exposed, either bare soil or vegetated sites, to provide the optimum geographical distribution. The 'total' elemental concentrations of 26 elements (Li, Na, K, Be, Mg, Ca, Sr, Ba, Al, La, Ti, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Ag, Zn, Cd, Pb, P, S, As) were determined by nitric/percholric acid digestion followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. The reconnaissance data shows that the spatial distribution of various elements depended on previous and present land use. Most elements (Ca, Cr, Mg and Mn excluded) exhibited relatively high concentrations in civilian and natural soils. Trends have been established for many elements, and concentrations exceeding guideline values have been found in certain areas of Gibraltar. This reconnaissance of Gibraltar is at present being followed by a more detailed baseline geochemical survey, which will establish the extent and magnitude of the variations in major and trace elements in soils and dusts, assess the impact of industrial, commercial and urban development on the geochemical landscape and to make recommendations concerning sustainable development.


Subject(s)
Soil , Trace Elements , Data Collection , Environmental Monitoring , Geological Phenomena , Geology , Reference Values , Spain
11.
Sci Total Environ ; 295(1-3): 81-9, 2002 Aug 05.
Article in English | MEDLINE | ID: mdl-12186294

ABSTRACT

The objective of this study is to investigate environmental contamination derived from metalliferous mining activities. In the study area, the Dalsung Cu-W mine, soils, various crop plants, stream waters, sediments and particulates were sampled in and around the mine and analyzed for As, Sb and Bi by ICP-AES with a hydride generator. In addition, soil pH, cation exchange capacity, loss-on-ignition and soil texture were also measured. Concentrations of As, Sb and Bi in surface soils sampled in the mine dump sites averaged 2500, 54 and 436 microg g(-1), respectively. Relatively lower concentrations, however, were found in soils from alluvial and high land sites and household garden sites. Arsenic, Sb and Bi contents in plant samples varied depending upon their species and parts, with higher concentrations in spring onions, soybean leaves and perilla leaves and lower levels in red peppers, corn grains and jujube grains. These results confirm that elemental concentrations in plant leaves are much higher than those in plant grain. Elevated levels of As, Sb and Bi were also found in stream sediments sampled in the vicinity of the mine and decreased with distance from the mine. Concentrations in stream water samples ranged from 0.8 to 19.1 microg As l(-1) and from 0.3 to 8.4 microg Bi l(-1); all the samples contained less than 1.0 microg Sb l(-1). Because of very low particulate loading at the time of sampling, the metal contents in particulates were very low (< 8.2 microg As l(-1), < 0.22 microg Sb l(-1) and 2.8 microg Bi l(-1). This may be mainly due to the low solubility of those elements under moderately acidic and oxidizing conditions of the mining area.


Subject(s)
Antimony/analysis , Arsenic/analysis , Bismuth/analysis , Mining , Soil Pollutants/analysis , Water Pollutants/analysis , Environmental Monitoring , Korea , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...