Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 286(1897): 20182528, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30963838

ABSTRACT

The exponential increase in species introductions during the Anthropocene has brought about a major loss of biodiversity. Amphibians have suffered large declines, with more than 16% considered to be threatened by invasive species. We conducted a global meta-analysis of the impacts of alien species on native amphibians to determine which aspects of amphibian ecology are most affected by plant, invertebrate, fish, amphibian, reptile, or mammal introductions. Measures of fitness were most strongly affected; amphibian performance was consistently lower in the presence of alien species. While exposure to alien species caused a significant decrease in amphibian behavioural activity when compared with a no species control, this response was stronger towards a control of native impacting species. This indicates a high degree of prey naiveté towards alien species and highlights the importance of using different types of controls in empirical studies. Alien invertebrates had the greatest overall impact on amphibians. This study sets a new agenda for research on biological invasions, highlighting the lack of studies investigating the impacts of alien species on amphibian terrestrial life-history stages. It also emphasizes the strong ecological impacts that alien species have on amphibian fitness and suggests that future introductions or global spread of alien invertebrates could strongly exacerbate current amphibian declines.


Subject(s)
Amphibians/physiology , Animal Distribution , Introduced Species , Amphibians/growth & development , Animals , Genetic Fitness , Invertebrates , Plants , Population Dynamics , Vertebrates
2.
PeerJ ; 6: e5813, 2018.
Article in English | MEDLINE | ID: mdl-30386704

ABSTRACT

Predators can play an important role in regulating prey abundance and diversity, determining food web structure and function, and contributing to important ecosystem services, including the regulation of agricultural pests and disease vectors. Thus, the ability to predict predator impact on prey is an important goal in ecology. Often, predators of the same species are assumed to be functionally equivalent, despite considerable individual variation in predator traits known to be important for shaping predator-prey interactions, like body size. This assumption may greatly oversimplify our understanding of within-species functional diversity and undermine our ability to predict predator effects on prey. Here, we examine the degree to which predator-prey interactions are functionally homogenous across a natural range of predator body sizes. Specifically, we quantify the size-dependence of the functional response of African clawed frogs (Xenopus laevis) preying on mosquito larvae (Culex pipiens). Three size classes of predators, small (15-30 mm snout-vent length), medium (50-60 mm) and large (105-120 mm), were presented with five densities of prey to determine functional response type and to estimate search efficiency and handling time parameters generated from the models. The results of mesocosm experiments showed that type of functional response of X. laevis changed with size: small predators exhibited a Type II response, while medium and large predators exhibited Type III responses. Functional response data showed an inversely proportional relationship between predator attack rate and predator size. Small and medium predators had highest and lowest handling time, respectively. The change in functional response with the size of predator suggests that predators with overlapping cohorts may have a dynamic impact on prey populations. Therefore, predicting the functional response of a single size-matched predator in an experiment may misrepresent the predator's potential impact on a prey population.

3.
Ecol Evol ; 7(8): 2661-2670, 2017 04.
Article in English | MEDLINE | ID: mdl-28428857

ABSTRACT

The magnitude of impacts some alien species cause to native environments makes them targets for regulation and management. However, which species to target is not always clear, and comparisons of a wide variety of impacts are necessary. Impact scoring systems can aid management prioritization of alien species. For such tools to be objective, they need to be robust to assessor bias. Here, we assess the newly proposed Environmental Impact Classification for Alien Taxa (EICAT) used for amphibians and test how outcomes differ between assessors. Two independent assessments were made by Kraus (Annual Review of Ecology Evolution and Systematics, 46, 2015, 75-97) and Kumschick et al. (Neobiota, 33, 2017, 53-66), including independent literature searches for impact records. Most of the differences between these two classifications can be attributed to different literature search strategies used with only one-third of the combined number of references shared between both studies. For the commonly assessed species, the classification of maximum impacts for most species is similar between assessors, but there are differences in the more detailed assessments. We clarify one specific issue resulting from different interpretations of EICAT, namely the practical interpretation and assigning of disease impacts in the absence of direct evidence of transmission from alien to native species. The differences between assessments outlined here cannot be attributed to features of the scheme. Reporting bias should be avoided by assessing all alien species rather than only the seemingly high-impacting ones, which also improves the utility of the data for management and prioritization for future research. Furthermore, assessments of the same taxon by various assessors and a structured review process for assessments, as proposed by Hawkins et al. (Diversity and Distributions, 21, 2015, 1360), can ensure that biases can be avoided and all important literature is included.

SELECTION OF CITATIONS
SEARCH DETAIL
...