Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 63(5): 1835-47, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22155631

ABSTRACT

Indirect evidence suggests that water supply to fleshy fruits during the final stages of development occurs through the phloem, with the xylem providing little water, or acting as a pathway for water loss back to the plant. This inference was tested by examining the water balance and vascular functioning of ripening kiwifruit berries (Actinidia chinensis var. chinensis 'Hort16A') exhibiting a pre-harvest 'shrivel' disorder in California, and normal development in New Zealand. Dye labelling and mass balance experiments indicated that the xylem and phloem were both functional and contributed approximately equally to the fruit water supply during this stage of development. The modelled fruit water balance was dominated by transpiration, with net water loss under high vapour pressure deficit (D(a)) conditions in California, but a net gain under cooler New Zealand conditions. Direct measurement of pedicel sap flow under controlled conditions confirmed inward flows in both the phloem and xylem under conditions of both low and high D(a). Phloem flows were required for growth, with gradual recovery after a step increase in D(a). Xylem flows alone were unable to support growth, but did supply transpiration and were responsive to D(a)-induced pressure fluctuations. The results suggest that the shrivel disorder was a consequence of a high fruit transpiration rate, and that the perception of complete loss or reversal of inward xylem flows in ripening fruits should be re-examined.


Subject(s)
Actinidia/growth & development , Fruit/growth & development , Phloem/physiology , Plant Transpiration/physiology , Xylem/physiology , Actinidia/physiology , Biological Transport/physiology , California , Fruit/physiology , Models, Biological , New Zealand , Plant Shoots/physiology , Plant Vascular Bundle/physiology , Time Factors , Water/physiology
2.
Ann Bot ; 101(5): 679-87, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18263898

ABSTRACT

BACKGROUND AND AIMS: Precocious flowering in apple trees is often associated with a smaller tree size. The hypothesis was tested that floral evocation in axillary buds, induced by dwarfing rootstocks, reduces the vigour of annual shoots developing from these buds compared with shoots developing from vegetative buds. METHODS: The experimental system provided a wide range of possible tree vigour using 'Royal Gala' scions and M.9 (dwarfing) and MM.106 (non-dwarfing) as rootstocks and interstocks. Second-year annual shoots were divided into growth units corresponding to periods (flushes) of growth namely, vegetative spur, extension growth unit, uninterrupted growth unit, floral growth unit (bourse) and extended bourse. The differences between the floral and vegetative shoots were quantified by the constituent growth units produced. KEY RESULTS: The dwarfing influence was expressed, firstly, in reduced proportions of shoots that contained at least one extension growth unit and secondly, in reduced proportions of bicyclic shoots (containing two extension growth units) and shoots with an uninterrupted growth unit. In treatments where floral shoots were present, they were markedly less vigorous than vegetative shoots with respect to both measures. In treatments with M.9 rootstock, vegetative and floral shoots produced on average 0.52 and 0.17 extension growth units, compared with 0.77 extension growth units per shoot in the MM.106 rootstock treatment. Remarkably, the number of nodes per extension growth unit was not affected by the rootstock/interstock treatments. CONCLUSIONS: These results showed that rootstocks/interstocks affect the type of growth units produced during the annual growth cycle, reducing the number of extension growth units, thus affecting the composition and vigour of annual shoots. This effect is particularly amplified by the transition to flowering induced by dwarfing rootstocks. The division of annual shoot into growth units will also be useful for measuring and modelling effects of age on apple tree architecture.


Subject(s)
Flowers/growth & development , Malus/growth & development , Malus/physiology , Plant Shoots/growth & development , Plant Shoots/physiology , Time Factors
3.
Tree Physiol ; 26(4): 505-15, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16414929

ABSTRACT

Patterns of shoot development and the production of different types of shoots were compared with scion leaf area index (LAI) to identify how eight clonal Actinidia rootstocks influence scion development. Rootstocks selected from seven Actinidia species (A. chrysantha Merri., A. deliciosa (A. Chev.) C. F. Liang et A.R. Ferguson, A. eriantha Benth., A. hemsleyana Dunn, A. kolomikta (Maxim. et Rupr.) Maxim., A. kolomikta C.F. Liang and A. polygama (Sieb. et Zucc.) Maxim.) were grafted with the scion Actinidia chinensis Planch. var. chinensis 'Hort16A' (yellow kiwifruit). Based on an earlier architectural analysis of A. chinensis, axillary shoot types produced by the scion were classified as short, medium or long. Short and medium shoots produced a restricted number of preformed leaves before the shoot apex ceased growth and aborted, resulting in a 'terminated' shoot. The apex of long shoots continued growth and produced more nodes throughout the growing seasons. Mid-season LAI of the scion was related to the proportion of shoots that ceased growth early in the season. Scions on low-vigor rootstocks had 50% or less leaf area than scions on the most vigorous rootstocks and had a higher proportion of short and medium shoots. On low-vigor rootstocks, a higher proportion of short shoots was retained during pruning to form the parent structure of the following year. Short parent shoots produced a higher proportion of short daughter shoots than long parent shoots, thus reinforcing the effect of the low-vigor rootstocks. However, overall effects of rootstock on shoot development were consistent regardless of parent shoot type and nodal position within the parent shoot. Slower-growing shoots were more likely to terminate and scions on low-vigor rootstocks produced a higher proportion of slow-growing shoots. Shoot termination also occurred earlier on low-vigor rootstocks. The slower growth of terminating shoots was detectable from about 20 days after bud burst. Removal of a proportion of shoots at the end of bud burst increased the growth rate and decreased the frequency of termination of the remaining shoots on all rootstocks, indicating that the fate of a shoot was linked to competitive interactions among shoots during initial growth immediately after bud burst. Rootstock influenced the process of shoot termination independently of its effect on final leaf size. Scions on low-vigor rootstocks had a higher proportion of short shoots and short shoots on all rootstocks had smaller final leaf sizes at equivalent nodes than medium or long shoots. Only later in the development of long shoots was final leaf size directly related to rootstock, with smaller leaves on low-vigor rootstocks. Thus, the most important effect of these Actinidia rootstocks on scion development occurred during the initial period of shoot growth immediately after bud burst.


Subject(s)
Actinidia/growth & development , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Shoots/growth & development , Actinidia/physiology , Plant Leaves/physiology , Plant Roots/physiology , Plant Shoots/physiology , Seasons
4.
Ann Bot ; 89(4): 471-82, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12096808

ABSTRACT

We developed a framework for the quantitative description of Actinidia vine architecture, classifying shoots into three types (short, medium and long) corresponding to the modes of node number distribution and the presence/ absence of neoformed nodes. Short and medium shoots were self-terminated and had only preformed nodes. Based on the cut-off point between their two modes of node number distribution, short shoots were defined as having nine or less nodes, and medium shoots as having more than nine nodes. Long shoots were non-terminated and had a number of neoformed nodes; the total number of nodes per shoot was up to 90. Branching patterns for each parent shoot type were represented by a succession of branching zones. Probabilities of different types of axillary production (latent bud, short, medium or long shoot) and the distributions of length for each branching zone were estimated from experimental data using hidden semi-Markov chain stochastic models. Branching was acrotonic on short and medium parent shoots, with most axillary shoots being located near the shoot tip. For long parent shoots, branching was mesotonic, with most long axillary shoots being located in the transition zone between the preformed and neoformed part of the parent shoot. Although the shoot classification is based on node number distribution there was a marked difference in average (per shoot) internode length between the shoot types, with mean values of 9, 27 and 47 mm for short, medium and long shoots, respectively. Bud and shoot development is discussed in terms of environmental controls.


Subject(s)
Actinidia/growth & development , Plant Shoots/growth & development , Algorithms , Cell Size/physiology , Markov Chains , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...