Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 23(1): 119-24, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23200256

ABSTRACT

The T-type calcium channel inhibitor Mibefradil was reported to protect the heart from atrial remodeling, a key process involved in the development of atrial fibrillation and arrhythmias. Mibefradil is not a selective T-type calcium channel inhibitor and also affects the function of different ion channels. Our aim was to develop a selective T-type calcium channel inhibitor to validate the importance of T-type-related pharmacology in atrial fibrillation. Structural optimisation of a previously disclosed hit series focussed on minimising exposure to the central nervous system and improving pharmacokinetic properties, while maintain adequate potency and selectivity. This resulted in the design of N-[[1-[2-(tert-butylcarbamoylamino)ethyl]-4-(hydroxymethyl)-4-piperidyl]methyl]-3,5-dichloro-benzamide, a novel, selective, peripherally restricted chemical probe to verify the role of T-type calcium channel inhibition on atrial fibrillation protection.


Subject(s)
Benzamides/chemistry , Calcium Channel Blockers/chemistry , Calcium Channels, T-Type/chemistry , Animals , Benzamides/chemical synthesis , Benzamides/pharmacokinetics , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/pharmacokinetics , Calcium Channels, T-Type/metabolism , Dogs , Drug Evaluation, Preclinical , Half-Life , Heart Rate/drug effects , Humans , Structure-Activity Relationship
3.
Bioorg Med Chem ; 15(22): 7184-202, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17845856

ABSTRACT

Several highly potent novel HCV NS3 protease inhibitors have been developed from two inhibitor series containing either a P2 trisubstituted macrocyclic cyclopentane- or a P2 cyclopentene dicarboxylic acid moiety as surrogates for the widely used N-acyl-(4R)-hydroxyproline in the P2 position. These inhibitors were optimized for anti HCV activities through examination of different ring sizes in the macrocyclic systems and further by exploring the effect of P4 substituent removal on potency. The target molecules were synthesized from readily available starting materials, furnishing the inhibitor compounds in good overall yields. It was found that the 14-membered ring system was the most potent in these two series and that the corresponding 13-, 15-, and 16-membered macrocyclic rings delivered less potent inhibitors. Moreover, the corresponding P1 acylsulfonamides had superior potencies over the corresponding P1 carboxylic acids. It is noteworthy that it has been possible to develop highly potent HCV protease inhibitors that altogether lack the P4 substituent. Thus the most potent inhibitor described in this work, inhibitor 20, displays a K(i) value of 0.41 nM and an EC(50) value of 9 nM in the subgenomic HCV replicon cell model on genotype 1b. To the best of our knowledge this is the first example described in the literature of a HCV protease inhibitor displaying high potency in the replicon assay and lacking the P4 substituent, a finding which should facilitate the development of orally active small molecule inhibitors against the HCV protease.


Subject(s)
Cyclopentanes/pharmacology , Enzyme Inhibitors/pharmacology , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Binding Sites , Cell Line , Crystallography, X-Ray , Cyclization , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Dicarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
4.
Bioorg Med Chem ; 15(2): 827-38, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17107807

ABSTRACT

Potent tetrapeptidic inhibitors of the HCV NS3 protease have been developed incorporating 4-hydroxy-cyclopent-2-ene-1,2-dicarboxylic acid as a new N-acyl-l-hydroxyproline mimic. The hydroxycyclopentene template was synthesized in eight steps from commercially available (syn)-tetrahydrophthalic anhydride. Three different amino acids were explored in the P1-position and in the P2-position the hydroxyl group of the cyclopentene template was substituted with 7-methoxy-2-phenyl-quinolin-4-ol. The P3/P4-positions were then optimized from a set of six amino acid derivatives. All inhibitors were evaluated in an in vitro assay using the full-length NS3 protease. Several potent inhibitors were identified, the most promising exhibiting a K(i) value of 1.1nM.


Subject(s)
Cyclopentanes/chemical synthesis , Cyclopentanes/pharmacology , Dicarboxylic Acids/chemical synthesis , Dicarboxylic Acids/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Indicators and Reagents , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Stereoisomerism , Structure-Activity Relationship
5.
J Med Chem ; 46(7): 1165-79, 2003 Mar 27.
Article in English | MEDLINE | ID: mdl-12646027

ABSTRACT

The thrombin inhibitory tripeptide d-Phe-Pro-Arg has been mimicked using either cyclopentenedicarboxylic derivatives or a cyclohexenedicarboxylic derivative as surrogate for the P2 proline. In the P3 position, tertiary amides were optimized as d-Phe P3 replacements. The P1 arginine was, in all compounds, substituted with the more rigid and biocompatible 4-aminomethylbenzamidine. One of the novel inhibitors was cocrystallized with alpha-thrombin and subjected to X-ray analysis. From analysis of the X-ray crystal structure, new ligands were designed leading to significantly improved binding affinity, the lead candidate exhibiting an in vitro IC(50) of 49 nM.


Subject(s)
Amides/chemical synthesis , Benzamides/chemical synthesis , Cyclohexanes/chemical synthesis , Cyclopentanes/chemical synthesis , Dicarboxylic Acids/chemical synthesis , Serine Proteinase Inhibitors/chemical synthesis , Thrombin/antagonists & inhibitors , Amides/chemistry , Benzamides/chemistry , Crystallography, X-Ray , Cyclohexanes/chemistry , Cyclopentanes/chemistry , Dicarboxylic Acids/chemistry , Ligands , Models, Molecular , Molecular Mimicry , Oligopeptides/chemistry , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...