Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 134(1): 197-200, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22188603

ABSTRACT

An in situ electrochemical X-ray absorption spectroscopy (XAS) cell has been fabricated that enables high oxygen flux to the working electrode by utilizing a thin poly(dimethylsiloxane) (PDMS) window. This cell design enables in situ XAS investigations of the oxygen reduction reaction (ORR) at high operating current densities greater than 1 mA in an oxygen-purged environment. When the cell was used to study the ORR for a Pt on carbon electrocatalyst, the data revealed a progressive evolution of the electronic structure of the metal clusters that is both potential-dependent and strongly current-dependent. The trends establish a direct correlation to d-state occupancies that directly tracks the character of the Pt-O bonding present.

2.
J Phys Chem Lett ; 1(15): 2251-2254, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20847902

ABSTRACT

Laccase, a multicopper oxidase, catalyses the four electron reduction of oxygen to water. Upon adsorption to an electrode surface, laccase is known to reduce oxygen at overpotentials lower than the best noble metal electrocatalysts usually employed. While the electrocatalytic activity of laccase is well established on carbon electrodes, laccase does not typically adsorb to better defined noble metal surfaces in an orientation that allows for efficient electrocatalysis. In this work, we utilized anthracene-2-methanethiol (AMT) to modify the surface of Au electrodes and examined the electrocatalytic activity of adsorbed laccase. AMT facilitated the adsorption of laccase, and the onset of electrocatalytic oxygen reduction was observed as high as 1.13 V(RHE). We observed linear Tafel behavior with a 144 mV/dec slope, consistent with an outer sphere single electron transfer from the electrode to a Cu site in the enzyme as the rate determining step of the oxygen reduction mechanism.

3.
J Am Chem Soc ; 132(35): 12185-7, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20715828

ABSTRACT

The performance of a novel carbon-supported copper complex of 3,5-diamino-1,2,4-triazole (Cu-tri/C) is investigated as a cathode material using an alkaline microfluidic H(2)/O(2) fuel cell. The absolute Cu-tri/C cathode performance is comparable to that of a Pt/C cathode. Furthermore, at a commercially relevant potential, the measured mass activity of an unoptimized Cu-tri/C-based cathode was significantly greater than that of similar Pt/C- and Ag/C-based cathodes. Accelerated cathode durability studies suggested multiple degradation regimes at various time scales. Further enhancements in performance and durability may be realized by optimizing catalyst and electrode preparation procedures.


Subject(s)
Carbon/chemistry , Copper/chemistry , Electric Power Supplies , Organometallic Compounds/chemistry , Triazoles/chemistry , Catalysis , Electrochemistry , Electrodes , Hydrogen/chemistry , Oxygen/chemistry
4.
Inorg Chem ; 49(8): 3557-66, 2010 Apr 19.
Article in English | MEDLINE | ID: mdl-20380457

ABSTRACT

A review of the oxygen reduction reaction (ORR) and its use in fuel-cell applications is presented. Discussed are mechanisms of the ORR and implementations of catalysts for this reaction. Specific catalysts discussed include nanoparticles, macrocycles and pyrolysis products, carbons, chalcogenides, enzymes, and coordination complexes. A prospectus for future efforts is provided.


Subject(s)
Electrochemistry/methods , Oxygen/chemistry , Catalysis , Oxidation-Reduction , Thermodynamics
7.
Inorg Chem ; 43(20): 6414-20, 2004 Oct 04.
Article in English | MEDLINE | ID: mdl-15446892

ABSTRACT

A new family of molecule-based magnets of general formula V[TCNQR(2)](2).zCH(2)Cl(2) has been synthesized and characterized (TCNQ = 7,7,8,8-tetracyano-p-quinodimethane; R = H, Br, Me, Et, i-Pr, OMe, OEt, and OPh). In addition, solid solutions of V[TCNQ](x)()[TCNQ(OEt)(2)](2)(-)(x)().zCH(2)Cl(2) composition have been prepared. Except R = Br, magnetic ordering was observed for all materials, with T(c) values between 7.5 K (R = Me) and 106 K (R = OEt), with R = H at 52 K. The substitution of electron-donating OMe and OEt groups for H in TCNQ increased T(c), whereas the substitution of less electron-donating alkyl groups (with respect to alkoxy groups) decreased T(c). The results of MO calculations indicate that neither the spin nor charge densities of the disubstituted TCNQs are sufficiently different to explain the wide range of critical temperatures. Although the structures of the amorphous materials are not known, it is proposed that the oxygen atom of the [TCNQR(2)](*)(-) acceptor (R = OMe and OEt) and the V(II) interact to form a seven-membered ring. This interaction could stabilize the structure and enhance the magnetic coupling, leading to an increased T(c). The magnetic properties of V[TCNQ](x)()[TCNQ(OEt)(2)](2)(-)(x)().zCH(2)Cl(2) deviated from the expected linear relationship with respect to x, exhibiting magnetic behavior more characteristic of a step function in a plot of T(c) versus x.


Subject(s)
Magnetics , Nitriles/chemistry , Organometallic Compounds , Organometallic Compounds/chemistry , Vanadium/chemistry , Molecular Structure , Organometallic Compounds/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...