Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202401912, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856095

ABSTRACT

Dihydrogen activation is the paradigmatic reaction of frustrated Lewis pairs (FLPs). While trigonal-planar Lewis acids have been well established in this transformation, tetrahedral Lewis acids are surprisingly limited. Indeed, several cases were computed as thermodynamically and kinetically feasible but exhibit puzzling discrepancies with experimental results. In the present study, a computational investigation of the factors influencing dihydrogen activation are considered by large ensemble sampling of encounter complexes, deformation energies and the activation strain model for a silicon/nitrogen FLP and compared with a boron/phosphorous FLP. The analysis adds the previously missing dimension of Lewis acids' structural flexibility as a factor that influences preexponential terms beyond pure transition state energies. It sheds light on the origin of "overfrustration" (defined herein), indicates structural constraint in Lewis acids as a linchpin for activation of weak donor substrates, and allows drawing a more refined mechanistic picture of this emblematic reactivity.

2.
Chem Sci ; 14(40): 11237-11242, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37860638

ABSTRACT

The silicon-carbon bond is a valuable linchpin for synthetic transformations. However, installing Si-C functionalities requires metalated C-nucleophiles, activated silicon reagents (silylium ions, silyl radicals, and silyl anions), or transition metal catalysis, and it occurs irreversibly. In contrast, spontaneous C-H silylations with neutral silanes leading to anionic silicates, and their reversible deconstruction, are elusive. Herein, the CH-bond silylation of heterocycles or a terminal alkyne is achieved by reaction with bis(perfluoro(N-phenyl-ortho-amidophenolato))silane and 1,2,2,6,6-pentamethylpiperidine. Computational and experimental insights reveal a frustrated Lewis pair (FLP) mechanism. Adding a silaphilic donor to the ammonium silicate products induces the reformation of the C-H bond, thus complementing previously known irreversible C-H bond silylation protocols. Interestingly, the FLP "activated" N-methylpyrrole exhibits "deactivated" features against electrophiles, while a catalytic functionalization is found to be effective only in the absence of a base.

3.
Chemistry ; 29(27): e202300269, 2023 May 11.
Article in English | MEDLINE | ID: mdl-36744802

ABSTRACT

Stable metal-free diradicaloids are fascinating compounds, typically based on covalent polycyclic or nitrogen-containing π-conjugated frameworks. Unfortunately, their preparation and the modulation of their diradical character require substantial synthetic efforts. The present work introduces a synthetic approach to diradicaloids by the ease and modularity of Lewis pair formation. Binding redox-active bis(catecholato)silane Lewis acids to ditopic tetraoxolene Lewis bases yields adducts with varying spin ground states. Computational analyses disclose that the diradical character increases with the electron donor ability of the catechols and the electron accepting ability of the tetraoxolene. Hence, this protocol grants access to diradicaloids with rationally adjustable diradical character of high potential for numerous applications in a single step.

4.
Chemistry ; 29(8): e202203024, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36367087

ABSTRACT

The first bis(amidophenolato)phosphonium salts are prepared and fully characterized. The perfluorinated derivative represents the strongest monocationic phosphorus Lewis acid on the fluoride and hydride ion affinity scale isolable to date. This affinity enables new reactions, such as hydride abstraction from Et3 SiH, the first phosphaalkoxylation of an alkyne or a phosphorus catalyzed intramolecular hydroarylation. All properties and reactions are scrutinized by theory and experiment. Substantial σ- and π-acidity provides the required affinity for substrate activation, while phosphorus-ligand cooperativity substantially enriches the reactivity portfolio of phosphonium ions.

5.
Angew Chem Int Ed Engl ; 61(44): e202210132, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36106685

ABSTRACT

The Lewis superacid bis(perchlorocatecholato)silane catalyzes C-O bond metathesis of alkyl ethers with an efficiency outperforming all earlier reported systems. Chemoselective ring contractions of macrocyclic crown ethers enable substrate-specific transformations, and an unprecedented ring-closing metathesis of polyethylene glycols allows polymer-selective degradation. Quantum chemical computations scrutinize a high Lewis acidity paired with a simultaneous low propensity for polydentate substrate binding as critical for successful catalysis. Based on these mechanistic insights, a second-generation class of silicon Lewis superacid with enhanced efficacy is identified and demonstrated.

6.
Chemistry ; 28(60): e202202273, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-35861023

ABSTRACT

The heterolytic cleavage of dihydrogen constitutes the hallmark reaction of frustrated Lewis pairs (FLP). While being well-established for planar Lewis acids, such as boranes or silylium ions, the observation of the primary H2 splitting products with non-planar Lewis acid FLPs remained elusive. In the present work, we report bis(perfluoro-N-phenyl-ortho-amidophenolato)silane and its application in dihydrogen activation to a fully characterized hydridosilicate. The strict design of the Lewis acid, the limited selection of the Lewis base, and the distinct reaction conditions emphasize the narrow tolerance to achieve this fascinating process with a tetrahedral Lewis acid.

7.
J Am Chem Soc ; 143(44): 18784-18793, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34699725

ABSTRACT

Catechols occupy a unique role in the structural, bio-, and geochemistry of silicon. Although a wealth of knowledge exists on their hypercoordinate complexes, the structure of tetracoordinate bis(catecholato)silane, Si(catH)2 1, has been enigmatic since its first report in 1951. Indeed, the claim of a planar-tetracoordinated silicon in 1 triggered a prominent debate, which is unsettled to this day. Herewith, we present a comprehensive structural study on 1 and derivatives in the gas phase by electron diffraction, in a neon matrix by IR spectroscopy, in solution by diffusion NMR spectroscopy, and in the solid-state by X-ray diffraction and MAS NMR spectroscopy, complemented by high-level quantum-chemical computations. The compound exhibits unprecedented phase adaptation. In the gas phase, the monomeric bis(catecholato)silane is tetrahedral, but in the condensed phase, it is metastable toward oligomerization up to a degree controllable by the type of catechol, temperature, and concentration. For the first time, spectroscopic evidence is obtained for a rapid Si-O σ-bond metathesis reaction. Hence, this study sorts out a long-lasting debate and confirms dynamic covalent features for our Earth's crust's most abundant chemical bond.

8.
Angew Chem Int Ed Engl ; 60(49): 25799-25803, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34570964

ABSTRACT

Despite the earth abundance and easy availability of silicon, only few examples of isolable neutral silicon centered Lewis superacids are precedent in the literature. To approach the general drawbacks of limited solubility and unselective deactivation pathways, we introduce a Lewis superacid, based on perfluorinated pinacol substituents. The compound is easily synthesized on a gram-scale as the corresponding acetonitrile mono-adduct 1⋅(MeCN) and was fully characterized, including single crystal X-ray diffraction analysis (SC-XRD) and state-of-the-art computations. Lewis acidity investigations by the Gutmann-Beckett method and fluoride abstraction experiments indicate a Lewis superacidic nature. The challenging Si-F bond activation of Et3 SiF is realized and promising catalytic properties are demonstrated, consolidating the potential applicability of silicon centered Lewis acids in synthetic catalysis.

9.
Chemistry ; 27(40): 10422-10427, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-33852170

ABSTRACT

Given its earth abundance, silicon is ideal for constructing Lewis acids of use in catalysis or materials science. Neutral silanes were limited to moderate Lewis acidity, until halogenated catecholato ligands provoked a significant boost. However, catalytic applications of bis(perhalocatecholato)silanes were suffering from very poor solubility and unknown deactivation pathways. In this work, the novel per(trifluoromethyl)catechol, H2 catCF3 , and adducts of its silicon complex Si(catCF3 )2 (1) are described. According to the computed fluoride ion affinity, 1 ranks among the strongest neutral Lewis acids currently accessible in the condensed phase. The improved robustness and affinity of 1 enable deoxygenations of aldehydes, ketones, amides, or phosphine oxides, and a carbonyl-olefin metathesis. All those transformations have never been catalyzed by a neutral silane. Attempts to obtain donor-free 1 attest to the extreme Lewis acidity by stabilizing adducts with even the weakest donors, such as benzophenone or hexaethyl disiloxane.

SELECTION OF CITATIONS
SEARCH DETAIL
...