Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917011

ABSTRACT

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Subject(s)
Cricetulus , Fucose , Fucose/metabolism , Animals , CHO Cells , Glycosylation , Humans , Trastuzumab/pharmacology , Trastuzumab/metabolism , Fucosyltransferases/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects
2.
J Biol Chem ; 300(7): 107420, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815868

ABSTRACT

Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.

3.
Carbohydr Res ; 536: 109058, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38354653

ABSTRACT

Campylobacters are important causes of gastrointestinal illness and the capsular polysaccharides (CPS) they produce are key virulence factors and targets for vaccine development. We report here the synthesis of two fragments of the Campylobacter jejuni CG8486 strain CPS that contain a rare 6-deoxy-d-ido-heptopyranose residue and, in one target, two O-methyl phosphoramidate (MeOPN) motifs. The synthetic approach features the stereoselective construction of the ß-d-ido-heptopyranoside linkage via glycosylation with a ß-d-galacto-heptopyranoside donor followed by a one-pot sequential C-2 and C-3 inversion. During the syntheses, we uncovered a number of interesting conformational effects with regard to the 6-deoxy-ido-heptopyranose ring, the glycosidic linkage connecting the two monosaccharides, and the MeOPN groups.


Subject(s)
Campylobacter jejuni , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Campylobacter jejuni/chemistry , Campylobacter jejuni/metabolism , Monosaccharides , Glycosylation
4.
J Org Chem ; 87(7): 4894-4907, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35290061

ABSTRACT

A one-pot strategy for functionalizing pyranoside 1,2-cis-diols with two different ester protecting groups is reported. The approach employs regioselective acylation via orthoester hydrolysis promoted by a carboxylic acid, e.g., levulinic acid, acetic acid, benzoic acid, or chloroacetic acid. Upon removal of water and introduction of a coupling agent, the carboxylic acid is esterified to the hydroxyl group liberated during hydrolysis. Although applied to 1,2-cis-diols on pyranoside scaffolds, the method should be applicable to such motifs on any six-membered ring.


Subject(s)
Alcohols , Carboxylic Acids , Acylation , Esters , Hydrolysis
5.
Angew Chem Int Ed Engl ; 57(47): 15592-15596, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30280458

ABSTRACT

The O-methyl phosphoramidate (MeOPN) motif is a non-stoichiometric modification of capsular polysaccharides (CPS) in ≈70 % of all Campylobacter jejuni strains. Infections by C. jejuni lead to food-borne illnesses and the CPS they produce are key virulence factors. The MeOPN phosphorus atom in these CPS is stereogenic and is found as a single stereoisomer. However, to date, the absolute stereochemistry at this atom has been undefined. We report the synthesis of the three repeating units found in C. jejuni 81-176 CPS; one of these possesses a MeOPN group. In the course of these studies we established that the stereochemistry of the phosphorus atom in this MeOPN group is R. These studies represent the first unequivocal proof of stereochemistry of this group in any C. jejuni CPS. The compounds produced are anticipated to be useful tools in investigations targeting the function and biosynthesis of this structurally-interesting modification, which so far has only been identified in campylobacter.


Subject(s)
Amides/chemistry , Campylobacter jejuni/chemistry , Phosphoric Acids/chemistry , Polysaccharides, Bacterial/chemistry , Amides/chemical synthesis , Campylobacter Infections/microbiology , Carbohydrate Conformation , Humans , Methylation , Models, Molecular , Phosphoric Acids/chemical synthesis , Polysaccharides, Bacterial/chemical synthesis , Stereoisomerism
7.
Org Biomol Chem ; 10(40): 8132-9, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-22961309

ABSTRACT

Synthesis of ß-C-D-galactosyl D- and L-alanines is carried out via a highly stereoselective Grignard reaction of glycosyl iodides, Sharpless dihydroxylation and S(N)2 displacement of the corresponding mesylate or tosylate. Alternatively, attempted triflation of the intermediate alcohols triggers a stereoselective debenzylative cyclization leading to interesting bicyclic trans-fused compounds.


Subject(s)
Alanine/analogs & derivatives , Alanine/chemical synthesis , Galactose/chemistry , Alanine/chemistry , Molecular Conformation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...