Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014914

ABSTRACT

Phage display panning is a powerful tool to select strong peptide binders to a given target, and when applied to inorganic materials (e.g., silica) as a target, it provides information on binding events and molecular recognition at the peptide-mineral interface. The panning process has limitations with the phage chemical elution being affected by bias toward positively charged binders, resulting in the potential loss of information on binder diversity; the presence of fast growing phages with an intrinsic growth advantage; and the presence of false positives from target unrelated peptides. To overcome some of these limitations, we developed a panning approach based on the sequential use of different eluents (Gly-HCl, pH-2.2; MgCl2, pH-6.1; and TEA, pH-11.0), or pH conditions (Gly-HCl 2.2 < pH < 11.0) that allows the identification of a diverse and comprehensive pool of strong binders. We have assessed and tested the authenticity of the identified silica binders via a complementary experimental (in vivo phage recovery rates and TEM imaging) and bioinformatics approach. We provide experimental evidence of the nonspecificity of the Gly-HCl eluent as typically used. Using a fluorimetric assay, we investigate in vitro binding of two peptides that differ by pI-S4 (HYIDFRW, pI 7.80) and S5 (YSLKQYQ, pI 9.44)─modified at the C terminal with an amide group to simulate net charges in the phage display system, confirming the vital role of electrostatic interactions as driving binding forces in the phage panning process. The presented optimized phage panning approach provides an opportunity to match known surface interactions at play with suitable elution conditions; to select only sequences relevant to a particular interfacial system. The approach has the potential to open up avenues to design interfacial systems to advance our understanding of peptide-assisted mineral growth, among other possibilities.

2.
Chem Rev ; 118(22): 11118-11193, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30362737

ABSTRACT

Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.

3.
Recent Pat Nanotechnol ; 11(3): 168-180, 2017.
Article in English | MEDLINE | ID: mdl-27915977

ABSTRACT

BACKGROUND: Although the popularity of using combinatorial display techniques for recognising unique peptides having high affinity for inorganic (nano) particles has grown rapidly, there are no systematic reviews showcasing current developments or patents on binding peptides specific to these materials. In this review, we summarize and discuss recent progress in patents on material binding peptides specifically exploring inorganic nano surfaces such as metals, metal oxides, minerals, carbonbased materials, polymer based materials, magnetic materials and semiconductors. We consider both the peptide display strategies used and the exploitation of the identified peptides in the generation of advanced nanomaterials. METHOD: In order to get a clear picture on the number of patents and literature present to date relevant to inorganic material binding biomolecules and their applications, a thorough online search was conducted using national and worldwide databases. The literature search include standard bibliographic databases while patents included EPO Espacenet, WIPO patent scope, USPTO, Google patent search, Patent lens, etc. along with commercial databases such as Derwent and Patbase. Both English and American spellings were included in the searches. RESULTS: The initial number of patents found related to material binders were 981. After reading and excluding irrelevant patents such as organic binding peptides, works published before 2001, repeated patents, documents not in English etc., 51 highly relevant patents published from 2001 onwards were selected and analysed. These patents were further separated into six categories based on their target inorganic material and combinatorial library used. They include relevant patents on metal, metal oxide or combination binding peptides (19), magnetic and semiconductor binding peptides (8), carbon based (3), mineral (5), polymer (8) and other binders (9). Further, how these material specific binders have been used to synthesize simple to complex bio- or nano-materials, mediate the controlled biomineralization process, direct self-assembly and nanofabrication of ordered structures, facilitate the immobilization of functional biomolecules and construct inorganic-inorganic or organic-inorganic nano hybrids are concisely described. CONCLUSION: From analysis of recent literature and patents, we clearly show that biomimetic material binders are in the vanguard of new design approaches for novel nanomaterials with improved/ controlled physical and chemical properties that have no adverse effect on the structural or functional activities of the nanomaterials themselves.

SELECTION OF CITATIONS
SEARCH DETAIL
...