Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 813: 152683, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34971683

ABSTRACT

A continuing increase in droughts/floods in Asian monsoon regions and worsening air quality due to aerosols are the two biggest threats to the health and well being of over 60% of the world's population. This study focuses on in-situ observations of atmospheric aerosols and their impact on shortwave direct aerosol radiative forcing (SDARF) during the southwest monsoon season (June-September) from 2015 to 2020 over a semi-arid station in Southern India. The Standardized precipitation index (SPI) is used to identify the droughts and normal monsoon years. Based on the SPI index, 2015, 2016, and 2018 were considered the drought monsoon years, while 2017, 2019, and 2020 were chosen as the normal monsoon years. During the drought monsoon years (normal monsoon years), the monthly mean black carbon (BC) was 1.17 ± 0.25 (0.72 ± 0.18), 1.02 ± 0.31 (0.64 ± 0.17), 1.02 ± 0.38 (0.74 ± 0.28), and 1.28 ± 0.35 µg/m3 (0.88 ± 0.21 µg/m3), for June, July, August and September respectively. The lower BC concentration during the normal monsoon years is mainly due to the enhanced wet-removal rates by high rainfall over the measurement location. In July, there was a high ventilation coefficient (VC) and low concentration of BC, while in September, low VC, and a high concentration of BC was observed in both the drought and the normal monsoon years. In addition, a plane-parallel radiative transfer model was used to estimate shortwave direct aerosol radiative forcing for composite and without BC at various surfaces, including the surface (SUF), atmosphere (ATM), and top of the atmosphere (TOA). During the drought monsoon years (normal monsoon years), the estimated monthly mean ATM forcing was 17.6 ± 2.4 (13.9 ± 2.1), 17.5 ± 7.5 (12.7 ± 4.4), 17.2 ± 4.0 (13.5 ± 1.9), and 17.4 ± 2.8 Wm-2 (14.6 ± 0.7 Wm-2) for June, July, August, and September, respectively. During the drought monsoon years, the estimated BC forcing was substantially larger (8.8 ± 2.6 Wm-2) than that of normal monsoon years (6.0 ± 1.5 Wm-2). It indicates the important role of absorbing BC aerosols during the drought monsoon years in introducing additional heat to the lower atmosphere, particularly over peninsular India.


Subject(s)
Air Pollutants , Droughts , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , India , Seasons
2.
J Atmos Sol Terr Phys ; 212: 105491, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33318726

ABSTRACT

The World Health Organization (WHO) declared the coronavirus disease of 2019 (COVID-19) as a pandemic due to its widespread global infection. This has resulted in lockdown under different phases in many nations, including India, around the globe. In the present study, we report the impact of aerosols on surface ozone in the context of pre-lockdown (01st - 24th March 2020 (PLD)), lockdown phase1 (25th March to 14th April 2020 (LDP1)), and lockdown phase 2 (15th April to 03rd May 2020 (LDP2)) on clear days at a semi-arid site, Anantapur in southern India using both in situ observations and model simulations. Collocated measurements of surface ozone (O3), aerosol optical depth (AOD), black carbon mass concentration (BC), total columnar ozone (TCO), solar radiation (SR), and ultraviolet radiation (UV-A) data were collected using an Ozone analyzer, MICROTOPS sunphotometer, Ozonometer, Aethalometer, and net radiometer during the study period. The diurnal variations of O3 and BC exhibited an opposite trend during three phases. The concentrations of ozone were ~10.7% higher during LDP1 (44.8 ± 5.2 ppbv) than the PLD (40.5 ± 6.0 ppbv), which mainly due to an unprecedented reduction in NOx emissions leading to a lower O3 titration by NO. The prominent increase in the surface zone during LDP1 is reasonably consistent with the observed photolysis frequencies (j (O1D)) through Tropospheric Ultraviolet and Visible (TUV) model. The results show that a pronounced spectral and temporal variability in the AOD during three lockdown phases is mainly due to distinct aerosol sources. The increase in AOD during LDP2 due to long-range transport can bring large amounts of mineral dust and smoke aerosols from the west Asian region and central India, and which is reasonably consistent with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts analysis over the measurement location. Overall, a drastic reduction in BC concentration (~8.4%) and AOD (10.8%) were observed in the semi-arid area during LDP1 with correspondence to PLD. The columnar aerosol size distributions retrieved from the spectral AODs followed power-law plus unimodal during three phases. The absorption angstrom exponent (AAE) analysis reveals a predominant contribution to the BC from biomass burning activities during the lockdown period over the measurement location.

3.
Sci Total Environ ; 566-567: 1002-1013, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27344510

ABSTRACT

This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2µgm(-3)) and the lowest in July (1.1±0.2µgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating.

SELECTION OF CITATIONS
SEARCH DETAIL
...