Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 228(Pt A): 119380, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36427461

ABSTRACT

Rivers are globally significant natural sources of atmospheric methane (CH4). However, the effect of land use changes on riverine CH4 dynamics, particularly in tropical zones, remain ambiguous, yet important to predict and anticipate the present and future contribution of rivers to the global CH4 budget. The present study examines the magnitude and drivers of riverine CH4 concentration and emission in the tropical Krishna River (KR) basin, India. The large spatial variability of CH4 concentration (0.03 to 185.34 µmol L -1) and emissions (0.04 mmol m-2 d-1 to 1666.24 mmol m-2 d-1) in the KR basin was linked to the site-specific features of the catchments through which rivers are draining. Several fold higher CH4 concentration and emission was observed for the urban river sites (64.63 ± 53.17 µmol L-1 and 294.15 ± 371.52 mmol m2 d-1, respectively) than the agricultural (1.05 ± 2.22 µmol L-1 and 3.45 ± 9.72 mmol m2 d-1, respectively) and forested (0.49 ± 0.23 µmol L-1 and 1.26 ± 0.73 mmol m2 d-1, respectively) sites. The concentrations of dissolved oxygen, total phosphorus, and Chlorophyll-a were significant hydrochemical variables strongly coupled with the dissolved CH4 concentrations. On the other hand, percentage of built-up area emerged as the most important landscape-level driver indicating that urbanization has an overriding effect on riverine CH4 concentration in the agriculture dominated KR basin. Our study supports the growing notion that tropical urban rivers are hotspot of CH4 emission. Furthermore, we show that the pattern of increasing in riverine CH4 concentration with built-up area (%) is a general feature of Asian river basins. As the urban land cover and population following an exponential increase, Asian rivers might contribute substantially to the regional and global CH4 budget.


Subject(s)
Methane , Rivers , Urbanization , Chlorophyll A , India
2.
Environ Sci Technol ; 56(15): 11041-11050, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35820110

ABSTRACT

Methanogenesis is traditionally considered as a strictly anaerobic process. Recent evidence suggests instead that the ubiquitous methane (CH4) oversaturation found in freshwater lakes is sustained, at least partially, by methanogenesis in oxic conditions. Although this paradigm shift is rapidly gaining acceptance, the magnitude and regulation of oxic CH4 production (OMP) have remained ambiguous. Based on the summer CH4 mass balance in the surface mixed layer (SML) of five small temperate lakes (surface area, SA, of 0.008-0.44 km2), we show that OMP (range of 0.01 ± 0.01 to 0.52 ± 0.04 µmol L-1 day-1) is linked to the concentrations of chlorophyll-a, total phosphorus, and dissolved organic carbon. The stable carbon isotopic mass balance of CH4 (δ13C-CH4) indicates direct photoautotrophic release as the most likely source of oxic CH4. Furthermore, we show that the oxic CH4 contribution to the SML CH4 saturation and emission is an inverse function of the ratio of the sediment area to the SML volume in lakes as small as 0.06 km2. Given that global lake CH4 emissions are dominated by small lakes (SA of <1 km2), the large contribution of oxic CH4 production (up to 76%) observed in this study suggests that OMP can contribute significantly to global CH4 emissions.


Subject(s)
Lakes , Methane , Carbon , Seasons
3.
Nat Commun ; 13(1): 43, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013226

ABSTRACT

Previous stable isotope and biomarker evidence has indicated that methanotrophy is an important pathway in the microbial loop of freshwater ecosystems, despite the low cell abundance of methane-oxidizing bacteria (MOB) and the low methane concentrations relative to the more abundant dissolved organic carbon (DOC). However, quantitative estimations of the relative contribution of methanotrophy to the microbial carbon metabolism of lakes are scarce, and the mechanism allowing methanotrophy to be of comparable importance to DOC-consuming heterotrophy remained elusive. Using incubation experiments, microscopy, and multiple water column profiles in six temperate lakes, we show that MOB play a much larger role than their abundances alone suggest because of their larger cell size and higher specific activity. MOB activity is tightly constrained by the local methane:oxygen ratio, with DOC-rich lakes with large hypolimnetic volume fraction showing a higher carbon consumption through methanotrophy than heterotrophy at the whole water column level. Our findings suggest that methanotrophy could be a critical microbial carbon consumption pathway in many temperate lakes, challenging the prevailing view of a DOC-centric microbial metabolism in these ecosystems.


Subject(s)
Carbon/metabolism , Fresh Water/microbiology , Lakes/microbiology , Methylococcaceae/metabolism , Biomass , Carbon Cycle , Dissolved Organic Matter , Ecosystem , Methane/metabolism , Oxygen/metabolism , Water
4.
Sci Total Environ ; 777: 146117, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33689901

ABSTRACT

Stable isotopic analysis is a popular method to understand the mechanisms sustaining methane (CH4) emissions in various aquatic environments. Yet, the general lack of concurrent measurements of isotopes and fluxes impedes our ability to establish a connection between the variation in the rates of CH4 emission and isotopic signature. Here, we examine the magnitude of CH4 ebullition (bubbling) and stable carbon isotopic signature (δ13C-CH4) of bubble CH4 in four northern temperate lakes and evaluate the in-lake processes shaping their variability. The ebullitive CH4 flux and bubble δ13C-CH4 varied from 0.01 to 37.0 mmol m-2 d-1 and between -71.0‰ and -50.9‰, respectively. The high emission lakes in general and high fluxing shallow zones within each lake consistently showed enriched δ13C-CH4 signature. Subsequently, in addition to the temperature dependence (1.4 ± 0.1 eV), the rates of ebullition strongly correlated with the variability of δ13C-CH4 across our study lakes. Our results suggest that higher ebullitive emissions are sustained by acetoclastic methanogenesis, likely fueled by fresh organic matter inputs. Further, the annual whole-lake estimate of bubble isotopic flux alone showed depleted δ13C-CH4 values (-64.6 ± 0.6‰ to -60.1 ± 3.2‰), yet the signature of the total CH4 emission (ebullition + diffusion) was relatively enriched (-60.7‰ to -52.6‰) due to high methanotrophic activity in the water column. We show that δ13C-CH4 signature of bubbles can be linked to the magnitude of ebullition itself, yet we suggest there is a need to account for different emission pathways and their isotopic signature to allocate CH4 source signature to northern lakes.

5.
Environ Microbiol ; 22(2): 738-751, 2020 02.
Article in English | MEDLINE | ID: mdl-31769176

ABSTRACT

Lake methane (CH4 ) emissions are largely controlled by aerobic methane-oxidizing bacteria (MOB) which mostly belong to the classes Alpha- and Gammaproteobacteria (Alpha- and Gamma-MOB). Despite the known metabolic and ecological differences between the two MOB groups, their main environmental drivers and their relative contribution to CH4 oxidation rates across lakes remain unknown. Here, we quantified the two MOB groups through CARD-FISH along the water column of six temperate lakes and during incubations in which we measured ambient CH4 oxidation rates. We found a clear niche separation of Alpha- and Gamma-MOB across lake water columns, which is mostly driven by oxygen concentration. Gamma-MOB appears to dominate methanotrophy throughout the water column, but Alpha-MOB may also be an important player particularly in well-oxygenated bottom waters. The inclusion of Gamma-MOB cell abundance improved environmental models of CH4 oxidation rate, explaining part of the variation that could not be explained by environmental factors alone. Altogether, our results show that MOB composition is linked to CH4 oxidation rates in lakes and that information on the MOB community can help predict CH4 oxidation rates and thus emissions from lakes.


Subject(s)
Lakes/microbiology , Methane/metabolism , Methylococcaceae/metabolism , Oxidation-Reduction , Oxygen/metabolism , Water/metabolism
6.
Environ Monit Assess ; 170(1-4): 287-300, 2010 Nov.
Article in English | MEDLINE | ID: mdl-19936957

ABSTRACT

Changes in the phytoplankton biomass (chlorophyll a), production rate, and species composition were studied over two seasons using the time series measurements in the northern limb of the Cochin estuary in relation to the prevailing hydrological conditions. The present study showed the significant seasonal variation in water temperature (F=69.4, P<0.01), salinity (F=341.93, P<0.01), dissolved inorganic phosphorous (F=17.71, P<0.01), and silica (F=898.1, P<0.01) compared to nitrogen (F=1.646, P>0.05). The uneven input of ammonia (3.4-224.8 µM) from upstream (Periyar River) leads to the inconsistency in the N/P ratio (range 6.8-262). A distinct seasonality was observed in Si/N (F=382.9, P<0.01) and Si/P (F=290.3, P<0.01) ratios compared to the N/P ratio (F=1.646, P>0.05). The substantial increase in chlorophyll a (average, 34.8±10 mg m(-3)) and primary production (average, 1,304±694 mg C m(-3) day(-1)) indicated the mesotrophic condition of the study area during the premonsoon (PRM) and it was attributed to the large increase in the population of nanoplankton (size<20 µ) such as Skeletonema costatum, Thalassiosira subtilis, Nitzschia closterium, and Navicula directa. In contrast, during the post monsoon (PM), low chlorophyll a concentration (average, 9.3±9.2 mg m(-3)) and primary production (average, 124±219 mg C m(-3) day(-1)) showed heterotrophic condition. It can be stated that favorable environmental conditions (optimum nutrients and light intensity) prevailing during the PRM have enhanced the abundance of the nanoplankton community in the estuary, whereas during the PM, the light limitation due to high turbidity can reduce the nanoplankton growth and abundance, even though high nutrient level exists.


Subject(s)
Fresh Water/chemistry , Phytoplankton/growth & development , Water Pollutants, Chemical/analysis , Biomass , Chlorophyll/analysis , Chlorophyll A , Environmental Monitoring , India , Nitrogen/analysis , Phosphorus/analysis , Phytoplankton/classification , Salinity , Seasons , Seawater/chemistry , Tropical Climate , Water Pollution, Chemical/statistics & numerical data , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...