Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 398-407, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25664751

ABSTRACT

In a wide variety of bacterial restriction-modification systems, a regulatory `controller' protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Šresolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.


Subject(s)
Bacterial Proteins/metabolism , Citrobacter/chemistry , Citrobacter/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Bacterial Proteins/chemistry , Base Sequence , Binding Sites , Citrobacter/genetics , Crystallography, X-Ray , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA-Binding Proteins/chemistry , Gene Expression Regulation, Bacterial , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Conformation , Protein Multimerization
2.
Nucleic Acids Res ; 40(20): 10532-42, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22941636

ABSTRACT

Controller (C) proteins regulate the expression of restriction-modification (RM) genes in a wide variety of RM systems. However, the RM system Esp1396I is of particular interest as the C protein regulates both the restriction endonuclease (R) gene and the methyltransferase (M) gene. The mechanism of this finely tuned genetic switch depends on differential binding affinities for the promoters controlling the R and M genes, which in turn depends on differential DNA sequence recognition and the ability to recognize dual symmetries. We report here the crystal structure of the C protein bound to the M promoter, and compare the binding affinities for each operator sequence by surface plasmon resonance. Comparison of the structure of the transcriptional repression complex at the M promoter with that of the transcriptional activation complex at the R promoter shows how subtle changes in protein-DNA interactions, underpinned by small conformational changes in the protein, can explain the molecular basis of differential regulation of gene expression.


Subject(s)
Bacterial Proteins/chemistry , DNA Modification Methylases/genetics , DNA, Bacterial/chemistry , DNA-Binding Proteins/chemistry , Operator Regions, Genetic , Bacterial Proteins/metabolism , Base Sequence , Crystallography, X-Ray , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Nucleic Acid Conformation , Protein Binding
3.
Nucleic Acids Res ; 40(9): 4158-67, 2012 May.
Article in English | MEDLINE | ID: mdl-22210861

ABSTRACT

The controller protein C.Esp1396I regulates the timing of gene expression of the restriction-modification (RM) genes of the RM system Esp1396I. The molecular recognition of promoter sequences by such transcriptional regulators is poorly understood, in part because the DNA sequence motifs do not conform to a well-defined symmetry. We report here the crystal structure of the controller protein bound to a DNA operator site. The structure reveals how two different symmetries within the operator are simultaneously recognized by the homo-dimeric protein, underpinned by a conformational change in one of the protein subunits. The recognition of two different DNA symmetries through movement of a flexible loop in one of the protein subunits may represent a general mechanism for the recognition of pseudo-symmetric DNA sequences.


Subject(s)
Bacterial Proteins/chemistry , DNA, Bacterial/chemistry , Operator Regions, Genetic , Trans-Activators/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Subunits/chemistry
4.
J Mol Biol ; 409(2): 177-88, 2011 06 03.
Article in English | MEDLINE | ID: mdl-21440553

ABSTRACT

Controller proteins play a key role in the temporal regulation of gene expression in bacterial restriction-modification (R-M) systems and are important mediators of horizontal gene transfer. They form the basis of a highly cooperative, concentration-dependent genetic switch involved in both activation and repression of R-M genes. Here we present biophysical, biochemical, and high-resolution structural analysis of a novel class of controller proteins, exemplified by C.Csp231I. In contrast to all previously solved C-protein structures, each protein subunit has two extra helices at the C-terminus, which play a large part in maintaining the dimer interface. The DNA binding site of the protein is also novel, having largely AAAA tracts between the palindromic recognition half-sites, suggesting tight bending of the DNA. The protein structure shows an unusual positively charged surface that could form the basis for wrapping the DNA completely around the C-protein dimer.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Citrobacter/metabolism , DNA, Bacterial/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Promoter Regions, Genetic , Protein Conformation , Protein Multimerization , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...