Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 459: 132160, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37562351

ABSTRACT

Oil weathering models are essential for predicting the behavior of spilled oil in the environment. Most models use a "Pseudo Component" (PC) approach to represent the wide range of compounds found in petroleum products. Within the approach, rather than modeling each individual compound in an oil, a manageable number of PCs are developed that represent whole classes of compounds. However, previous studies focused mainly on traditional crude oils and did not develop a generic approach to create an optimal set of PCs for a variety of oils. In developing the updates to the NOAA oil weathering model, we propose herein a generic approach to construct PCs using oil distillation data to capture the complexity of oil evaporative weathering. We validated our approach with 899 oils from the Automated Data Inquiry for Oil Spills (ADIOS) oil library and found that an optimal set of sixteen PCs should be used. These PCs include two with low boiling point (below 144 °C), one with a high boiling point (above 400 °C), and thirteen constructed within a middle range of boiling points with a temperature resolution of 20 °C. Our simulation tests suggested that this set of sixteen PCs adequately characterizes oil evaporation processes for a wide variety of oils.

2.
J Hazard Mater ; 436: 129211, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739733

ABSTRACT

Oil spills have been recognized as among the worst kinds of environmental disasters, causing severe coastal ecological and economic damages. Although benthic flow and solute fluxes are known to have strong impacts on fate and transport of oil deposited within marine sediments, their endogenous mechanisms still remain to be uncovered. In this paper, simulations of flow and solute transport processes along with hydrocarbon biodegradation were conducted in a cylindrical benthic chamber system to investigate influences of benthic hydrodynamics on oil biodegradation in permeable marine sediments. Results show that ripple-flow interactions create subsurface recirculation cells whereby seawater infiltrates into the benthic sediments at ripple troughs while groundwater discharges near the crests. It results in a spatially varied oil biodegradation rate in marine sediments. Significant oil biodegradation occurs near sediment ripple troughs due to direct oxygen recharge, while biodegradation of oil deposited uphill becomes slow due to limited oxygen replenishment. Oil biodegradation decreases subsurface oxygen content, and consequently impedes discharge of oxygen from benthic sediments. Our results reveal a dynamic interaction between oil biodegradation and benthic flow and solute transport processes, which has strong implications for predicting oil persistence and biodegradation within marine sediments and its associated impacts on benthic biogeochemical processes.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Biodegradation, Environmental , Geologic Sediments/chemistry , Oxygen , Petroleum Pollution/analysis , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...