Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Immunol ; 211(2): 229-240, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37294309

ABSTRACT

Immunotherapy development for solid tumors remains challenging, partially due to a lack of reproducible, cost-effective in vitro three-dimensional (3D) models to mimic the heterogeneous and complex tumor microenvironment. Here, we investigate the cellular anti-tumor reactivity of αß T cells engineered to express a defined γδ TCR (TEG A3). For that purpose, we developed a 3D cytotoxicity assay targeting cell line-derived spheroids or patient-derived tumor organoids formed in serum-free media. Tumor cell lysis by TEG A3 was monitored using the Incucyte S3 live-cell imaging system with the apoptosis marker caspase 3/7 green and endpoint readouts of IFN-γ secretion in the supernatant. The 3D cytotoxicity assay model system was able to adequately demonstrate TEG A3 reactivity toward targets expressing an isoform of CD277 (CD277J). To obtain a more complex heterogeneous tumor microenvironment, patient-derived organoids were mixed with unmatched patient-derived fibroblasts or matched cancer-associated fibroblasts. In all assays, we demonstrated the tumor target specificity of TEG A3, lysing tumor cells within 48 h. Our study demonstrates the utility of complex 3D cytotoxicity assay model systems incorporating the tumor microenvironment in the functional evaluation of T cell-based adoptive immunotherapy, providing a useful platform for early-stage preclinical development of immunotherapies.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , T-Lymphocytes , Immunotherapy, Adoptive/methods , Immunotherapy , Cell- and Tissue-Based Therapy , Tumor Microenvironment
2.
Nat Cancer ; 3(4): 418-436, 2022 04.
Article in English | MEDLINE | ID: mdl-35469014

ABSTRACT

Patient-derived organoids (PDOs) recapitulate tumor architecture, contain cancer stem cells and have predictive value supporting personalized medicine. Here we describe a large-scale functional screen of dual-targeting bispecific antibodies (bAbs) on a heterogeneous colorectal cancer PDO biobank and paired healthy colonic mucosa samples. More than 500 therapeutic bAbs generated against Wingless-related integration site (WNT) and receptor tyrosine kinase (RTK) targets were functionally evaluated by high-content imaging to capture the complexity of PDO responses. Our drug discovery strategy resulted in the generation of MCLA-158, a bAb that specifically triggers epidermal growth factor receptor degradation in leucine-rich repeat-containing G-protein-coupled receptor 5-positive (LGR5+) cancer stem cells but shows minimal toxicity toward healthy LGR5+ colon stem cells. MCLA-158 exhibits therapeutic properties such as growth inhibition of KRAS-mutant colorectal cancers, blockade of metastasis initiation and suppression of tumor outgrowth in preclinical models for several epithelial cancer types.


Subject(s)
Antibodies, Bispecific , Neoplasms, Glandular and Epithelial , Antibodies, Bispecific/pharmacology , ErbB Receptors/metabolism , Humans , Imidazoles , Neoplasms, Glandular and Epithelial/metabolism , Neoplastic Stem Cells/metabolism , Organoids , Pyrazines , Receptors, G-Protein-Coupled/metabolism
4.
Nat Commun ; 12(1): 4445, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290245

ABSTRACT

Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations. MCLA-145 potently activates T cells at sub-nanomolar concentrations, even under suppressive conditions, and enhances T cell priming, differentiation and memory recall responses. In vivo, MCLA-145 anti-tumor activity is superior to immune checkpoint inhibitor comparators and linked to recruitment and intra-tumor expansion of CD8 + T cells. No graft-versus-host-disease is observed in contrast to other antibodies inhibiting the PD-1 and PD-L1 pathway. Non-human primates treated with 100 mg/kg/week of MCLA-145 show no adverse effects. The conditional activation of CD137 signaling by MCLA-145, triggered by neighboring cells expressing >5000 copies of PD-L1, may provide both safety and potency advantages.


Subject(s)
4-1BB Ligand/agonists , Antibodies, Bispecific/pharmacology , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/pharmacology , 4-1BB Ligand/immunology , Animals , Antibodies, Bispecific/immunology , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes , Humans , Immune Checkpoint Inhibitors/immunology , Immune Tolerance/drug effects , Immunologic Memory/drug effects , Immunotherapy , Lymphocyte Activation/drug effects
5.
Expert Opin Biol Ther ; 19(7): 721-733, 2019 07.
Article in English | MEDLINE | ID: mdl-31286786

ABSTRACT

Objective: We report the characterization of MCLA-117, a novel T cell-redirecting antibody for acute myeloid leukaemia (AML) treatment targeting CD3 on T cells and CLEC12A on leukaemic cells. In AML, CLEC12A is expressed on blasts and leukaemic stem cells. Methods: The functional capacity of MCLA-117 to redirect resting T cells to eradicate CLEC12APOS tumor cells was studied using human samples, including primary AML samples. Results: Within the normal hematopoietic compartment, MCLA-117 binds to cells expressing CD3 and CLEC12A but not to early myeloid progenitors or hematopoietic stem cells. MCLA-117 induces T cell activation (EC50 = 44 ng/mL), T cell proliferation, mild pro-inflammatory cytokine release, and redirects T cells to lyse CLEC12APOS target cells (EC50 = 68 ng/mL). MCLA-117-induced targeting of normal CD34POS cells co-cultured with T cells spares erythrocyte and megakaryocyte differentiation as well as preserves mono-myelocytic lineage development. In primary AML patient samples with autologous T cells, MCLA-117 robustly induced AML blast killing (23-98%) at low effector-to-target ratios (1:3-1:97). Conclusion: These findings demonstrate that MCLA-117 efficiently redirects T cells to kill tumour cells while sparing the potential of the bone marrow to develop the full hematological compartment and support further clinical evaluation as a potentially potent treatment option for AML.


Subject(s)
Antibodies, Bispecific/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/metabolism , Antibodies, Bispecific/pharmacokinetics , CD3 Complex/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Cytokines/analysis , Cytokines/metabolism , HL-60 Cells , Half-Life , Humans , Lectins, C-Type/immunology , Leukemia, Myeloid, Acute/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Receptors, Mitogen/immunology , T-Lymphocytes/metabolism
6.
Invest New Drugs ; 36(6): 1006-1015, 2018 12.
Article in English | MEDLINE | ID: mdl-29728897

ABSTRACT

Introduction MCLA-128 is a bispecific monoclonal antibody targeting the HER2 and HER3 receptors. Pharmacokinetics (PK) and pharmacodynamics (PD) of MCLA-128 have been evaluated in preclinical studies in cynomolgus monkeys and mice. The aim of this study was to characterize the PK and PD of MCLA-128 and to predict a safe starting dose and efficacious clinical dose for the First-In-Human study. Methods A PK-PD model was developed based on PK data from cynomolgus monkeys and tumor growth data from a mouse JIMT-1 xenograft model. Allometric scaling was used to scale PK parameters between species. Simulations were performed to predict the safe and efficacious clinical dose, based on AUCs, receptor occupancies and PK-PD model simulations. Results MCLA-128 PK in cynomolgus monkeys was described by a two-compartment model with parallel linear and nonlinear clearance. The xenograft tumor growth model consisted of a tumor compartment with a zero-order growth rate and a first-order dying rate, both affected by MCLA-128. Human doses of 10 to 480 mg q3wk were predicted to show a safety margin of >10-fold compared to the cynomolgus monkey AUC at the no-observed-adverse-effect-level (NOAEL). Doses of ≥360 mg resulted in predicted receptor occupancies above 99% (Cmax and Cave). These doses showed anti-tumor efficacy in the PK-PD model. Conclusions This analysis predicts that a flat dose of 10 to 480 mg q3wk is suitable as starting dose for a First-in-Human study with MCLA-128. Flat doses ≥360 mg q3wk are expected to be efficacious in human, based on receptor occupancies and PK-PD model simulations.


Subject(s)
Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/pharmacokinetics , Immunoglobulin G/pharmacology , Models, Biological , Translational Research, Biomedical , Animals , Area Under Curve , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Dose-Response Relationship, Immunologic , Female , Humans , Macaca fascicularis , Mice , Mice, SCID , Treatment Outcome , Tumor Burden , Xenograft Model Antitumor Assays
7.
Cancer Cell ; 33(5): 922-936.e10, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29763625

ABSTRACT

HER2-driven cancers require phosphatidylinositide-3 kinase (PI3K)/Akt signaling through HER3 to promote tumor growth and survival. The therapeutic benefit of HER2-targeting agents, which depend on PI3K/Akt inhibition, can be overcome by hyperactivation of the heregulin (HRG)/HER3 pathway. Here we describe an unbiased phenotypic combinatorial screening approach to identify a bispecific immunoglobulin G1 (IgG1) antibody against HER2 and HER3. In tumor models resistant to HER2-targeting agents, the bispecific IgG1 potently inhibits the HRG/HER3 pathway and downstream PI3K/Akt signaling via a "dock & block" mechanism. This bispecific IgG1 is a potentially effective therapy for breast cancer and other tumors with hyperactivated HRG/HER3 signaling.


Subject(s)
Antibodies, Bispecific/administration & dosage , Immunoglobulin G/administration & dosage , Neoplasms/drug therapy , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/metabolism , Signal Transduction/drug effects , Animals , Antibodies, Bispecific/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Immunoglobulin G/pharmacology , MCF-7 Cells , Mice , Models, Molecular , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/chemistry , Receptor, ErbB-3/chemistry , Xenograft Model Antitumor Assays
8.
Clin Cancer Res ; 21(24): 5519-31, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26296355

ABSTRACT

PURPOSE: Preclinical studies in HER2-amplified gastrointestinal cancer models have shown that cotargeting HER2 with a monoclonal antibody and a small molecule is superior to monotherapy with either inhibitor, but the underlying cooperative mechanisms remain unexplored. We investigated the molecular underpinnings of this synergy to identify key vulnerabilities susceptible to alternative therapeutic opportunities. EXPERIMENTAL DESIGN: The phosphorylation/activation of HER2, HER3, EGFR (HER receptors), and downstream transducers was evaluated in HER2-overexpressing colorectal and gastric cancer cell lines by Western blotting and/or multiplex phosphoproteomics. The in vivo outcome of antibody-mediated HER2 blockade by trastuzumab, reversible HER2 inhibition by lapatinib, and irreversible HER2 inhibition by afatinib was assessed in patient-derived tumorgrafts and cell-line xenografts by monitoring tumor growth curves and by using antibody-based proximity assays. RESULTS: Trastuzumab monotherapy reduced HER3 phosphorylation, with minor consequences on downstream transducers. Lapatinib alone acutely inhibited all HER receptors and effectors but led to delayed rephosphorylation of HER3 and EGFR and partial restoration of ERK and AKT activity. When combined with lapatinib, trastuzumab prevented HER3/EGFR reactivation and caused prolonged inhibition of ERK/AKT. Afatinib alone was also very effective in counteracting the reinstatement of HER3, EGFR, and downstream signaling activation. In vivo, the combination of trastuzumab and lapatinib-or, importantly, monotherapy with afatinib-resulted in overt tumor shrinkage. CONCLUSIONS: Only prolonged inhibition of HER3 and EGFR, achievable by dual blockade with trastuzumab and lapatinib or irreversible HER2 inhibition by single-agent afatinib, led to regression of HER2-amplified gastrointestinal carcinomas. Clin Cancer Res; 21(24); 5519-31. ©2015 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma/genetics , Carcinoma/metabolism , ErbB Receptors/antagonists & inhibitors , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/genetics , Receptor, ErbB-3/antagonists & inhibitors , Afatinib , Animals , Carcinoma/drug therapy , Carcinoma/pathology , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , ErbB Receptors/metabolism , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/pathology , Gene Amplification , Gene Expression , Gene Knockdown Techniques , Humans , Lapatinib , Mice , Phosphorylation , Quinazolines/administration & dosage , Quinazolines/pharmacology , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Signal Transduction/drug effects , Trastuzumab/administration & dosage , Trastuzumab/pharmacology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
9.
Proc Natl Acad Sci U S A ; 111(1): 445-50, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24335589

ABSTRACT

The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2 influenza A viruses has been previously characterized that binds to a highly conserved epitope at the base of the hemagglutinin (HA) stem and has neutralizing activity against H3, H7, and H10 viruses. Here, we report a second group 2 bnAb, CR8043, which was derived from a different germ-line gene encoding a highly divergent amino acid sequence. CR8043 has in vitro neutralizing activity against H3 and H10 viruses and protects mice against challenge with a lethal dose of H3N2 and H7N7 viruses. The crystal structure and EM reconstructions of the CR8043-H3 HA complex revealed that CR8043 binds to a site similar to the CR8020 epitope but uses an alternative angle of approach and a distinct set of interactions. The identification of another antibody against the group 2 stem epitope suggests that this conserved site of vulnerability has great potential for design of therapeutics and vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A virus/chemistry , Animals , Antibodies/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Chromatography, Gel , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunologic Memory , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Kinetics , Mice , Mice, Inbred BALB C , Microscopy, Electron , Models, Molecular , Molecular Conformation , Species Specificity
10.
MAbs ; 6(1): 197-203, 2014.
Article in English | MEDLINE | ID: mdl-24351421

ABSTRACT

Composite antibody mixtures designed to combat diseases present a new, rapidly emerging technology in the field of biopharmaceuticals. The combination of multiple antibodies can lead to increased effector response and limit the effect of escape variants that can propagate the disease. However, parallel development of analytical technologies is required to provide fast, thorough, accurate, and robust characterization of these mixtures. Here, we evaluate the utility of native mass spectrometry on an Orbitrap platform with high mass resolving power to characterize composite mixtures of up to 15 separate antibodies. With this technique, unambiguous identification of each antibody in the mixtures was achieved. Mass measurements of the intact antibodies varied 7 ppm on average, allowing highly reproducible identification and quantitation of each compound in these complex mixtures. We show that with the high mass-resolving power and robustness of this technology, high-resolution native mass spectrometry can be used efficiently even for batch-to batch characterization.


Subject(s)
Mass Spectrometry/methods , Single-Chain Antibodies/chemistry , HEK293 Cells , Humans
11.
Br J Haematol ; 159(3): 299-310, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22934889

ABSTRACT

CD1A is a cell surface protein expressed on Langerhans cells and cortical thymocytes that could potentially be used as an immunotherapeutic target in Langerhans Cell Histiocytosis (LCH), the cortical subtype of T-cell acute lymphocytic leukaemia (T-ALL) and other CD1A-positive tumours. The monoclonal antibody (mAb) CR2113 was selected from a panel of six fully human mAbs isolated from a semi-synthetic phage display library, based on specificity and avidity against cells expressing CD1 antigen variants. CR2113 recognized CD1A in T-ALL cell lines and patient samples. Confocal microscopy revealed that the CR2113-CD1A complex was internalized at 37°C. Furthermore, while CR2113 induced moderate complement-dependent cytotoxicity (CDC), potent antibody-dependent cell cytotoxicity (ADCC) activity was observed against CD1A expressing cell lines as well as T-ALL cell lines and T-ALL patient samples. In vivo experiments showed that CR2113 as a naked antibody has modest but specific anti-tumour activity against CD1A-expressing tumours. CR2113 is a high-affinity human anti-CD1A mAb with significant ADCC activity. These properties make CR2113 a candidate for clinical diagnostic imaging and therapeutic targeting of LCH as well as potential use in other clinical applications.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigens, CD1/immunology , Cell Surface Display Techniques , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/isolation & purification , Antibody Affinity/immunology , Antibody Specificity/immunology , Antigens, CD1/metabolism , Cell Line, Tumor , Humans , Immunoglobulin G/immunology , Kinetics , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Peptide Library , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Single-Chain Antibodies/immunology , Single-Chain Antibodies/isolation & purification
12.
Anal Chem ; 84(16): 7227-32, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22882109

ABSTRACT

Native mass spectrometry was evaluated for the qualitative and semiquantitative analysis of composite mixtures of antibodies representing biopharmaceutical products coexpressed from single cells. We show that by using automated peak fitting of the ion signals in the native mass spectra, we can quantify the relative abundance of each of the antibodies present in mixtures, with an average accuracy of 3%, comparable to a cation exchange chromatography based approach performed in parallel. Moreover, using native mass spectrometry we were able to identify, separate, and quantify 9 antibodies present in a complex mixture of 10 antibodies, whereas this complexity could not be unraveled by cation exchange chromatography. Native mass spectrometry presents a valuable alternative to existing analytical methods for qualitative and semiquantitative profiling of biopharmaceutical products. It provides both the identity of each species in a mixture by mass determination and the relative abundance through comparison of relative ion signal intensities. Native mass spectrometry is a particularly effective tool for characterization of heterogeneous biopharmaceutical products such as bispecific antibodies and antibody mixtures.


Subject(s)
Antibodies/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Antibodies/isolation & purification , CHO Cells , Chromatography, Ion Exchange , Cricetinae , Cricetulus , Immunoglobulin G/analysis , Immunoglobulin G/isolation & purification
13.
Biotechnol Bioeng ; 106(5): 741-50, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20564612

ABSTRACT

Therapeutic monoclonal antibodies, a highly successful class of biological drugs, are conventionally manufactured in mammalian cell lines. A recent approach to increase the therapeutic effectiveness of monoclonal antibodies has been to combine two or more of them; however this increases the complexity of development and manufacture. To address this issue a method to efficiently express multiple monoclonal antibodies from a single cell has been developed and we describe here the generation of stable cell clones that express high levels of a human monoclonal antibody mixture. PER.C6 cells were transfected with a combination of plasmids containing genes encoding three different antibodies. Clones that express the three corresponding antibody specificities were identified, subcloned, and passaged in the absence of antibiotic selection pressure. At several time points, batch production runs were analyzed for stable growth and IgG production characteristics. The majority (11/12) of subclones analyzed expressed all three antibody specificities in constant ratios with total IgG productivity ranging between 15 and 20 pg/cell/day under suboptimal culture conditions after up to 67 population doublings. The growth and IgG production characteristics of the stable clones reported here resemble those of single monoclonal antibody cell lines from conventional clone generation programs. We conclude that the methodology described here is applicable to the generation of stable PER.C6(R) clones for industrial scale production of mixtures of antibodies.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Biotechnology/methods , Gene Expression , Antibodies, Monoclonal/genetics , Cell Culture Techniques , Cell Line , Genetic Vectors , Humans , Plasmids , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
14.
Methods Mol Biol ; 562: 45-60, 2009.
Article in English | MEDLINE | ID: mdl-19554286

ABSTRACT

A method for the construction of West Nile virus immune donor antibody repertoires is described. B cells are harvested from a suitable donor and the antibody variable genes are amplified using polymerase chain reaction (PCR). The PCR fragments are cloned in a phage display vector to construct a repertoire that can be used in panning procedures to identify many unique monoclonal antibodies.


Subject(s)
Antibodies, Viral/immunology , Bacteriophages/immunology , Blood Donors , Peptide Library , West Nile Fever/blood , West Nile virus/immunology , Antigens, Viral/immunology , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Protein Engineering , RNA, Viral/genetics , RNA, Viral/metabolism
15.
J Mol Biol ; 387(3): 548-58, 2009 Apr 03.
Article in English | MEDLINE | ID: mdl-19361421

ABSTRACT

To study the contribution of antibody light (L) chains to the diversity and binding properties of immune repertoires, a phage display repertoire was constructed from a single human antibody L chain and a large collection of antibody heavy (H) chains harvested from the blood of two human donors immunized with tetanus toxoid (TT) vaccine. After selection for binding to TT, 129 unique antibodies representing 53 variable immunoglobulin H chain (V(H)) gene rearrangements were isolated. This panel of anti-TT antibodies restricted to a single variable immunoglobulin L chain (V(L)) could be organized into 17 groups binding non-competing epitopes on the TT molecule. Comparison of the V(H) regions in this V(L)-restricted panel with a previously published repertoire of anti-TT V(H) regions with cognate V(H)-V(L) pairing showed a very similar distribution of V(H), D(H) and J(H) gene segment utilization and length of the complementarity-determining region 3 of the H chain. Surface plasmon resonance analysis of the single-V(L) anti-TT repertoire unveiled a range of affinities, with a median monovalent affinity of 2 nM. When the single-V(L) anti-TT V(H) repertoire was combined with a collection of naïve V(L) regions and again selected for binding to TT, many of the V(H) genes were recovered in combination with a diversity of V(L) regions. The affinities of a panel of antibodies consisting of a single promiscuous anti-TT V(H) combined with 15 diverse V(L) chains were determined and found to be identical to each other and to the original isolate restricted to a single-V(L) chain. Based on previous estimates of the clonal size of the human anti-TT repertoire, we conclude that up to 25% of human anti-TT-encoding V(H) regions from an immunized repertoire have promiscuous features. These V(H) regions readily combine with a single antibody L chain to result in a large panel of anti-TT antibodies that conserve the expected epitope diversity, V(H) region diversity and affinity of a natural repertoire.


Subject(s)
Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Tetanus Toxoid/immunology , Amino Acid Sequence , Antibody Affinity , Epitopes/chemistry , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Molecular Sequence Data , Peptide Library , Tetanus Toxoid/chemistry
16.
J Virol ; 83(13): 6494-507, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19386704

ABSTRACT

West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing mouse monoclonal antibodies (MAbs) recognize an epitope on the lateral ridge of domain III (DIII-lr) of the envelope (E) protein. However, studies with serum from human patients show that antibodies against the DIII-lr epitope comprise, at best, a minor component of the human anti-WNV antibody response. Herein, we characterize in detail two WNV-specific human MAbs, CR4348 and CR4354, that were isolated from B-cell populations of convalescent patients. These MAbs strongly neutralize WNV infection of cultured cells, protect mice against lethal infection in vivo, and yet poorly recognize recombinant forms of the E protein. Instead, CR4348 and CR4354 bind determinants on intact WNV virions and subviral particles in a pH-sensitive manner, and neutralization is altered by mutations at the dimer interface in domain II and the hinge between domains I and II, respectively. CR4348 and CR4354 human MAbs neutralize infection at a postattachment step in the viral life cycle, likely by inhibiting acid-induced fusion within the endosome.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , West Nile Fever/prevention & control , West Nile virus/immunology , Animals , Antibody Specificity/immunology , B-Lymphocytes/immunology , Cell Line , Epitope Mapping , Humans , Mice , Mice, Inbred C57BL , Neutralization Tests , Protein Structure, Tertiary , Recombinant Proteins/immunology , Substrate Specificity , Viral Envelope Proteins/immunology , West Nile Fever/immunology , West Nile virus/genetics
17.
Science ; 324(5924): 246-51, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19251591

ABSTRACT

Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.


Subject(s)
Antibodies, Viral/immunology , Antibody Affinity , Antigens, Viral/immunology , Binding Sites, Antibody , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin Fab Fragments/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Antibodies, Viral/chemistry , Antigens, Viral/chemistry , Crystallization , Crystallography, X-Ray , Epitopes/immunology , Glycosylation , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fab Fragments/chemistry , Influenza Vaccines , Membrane Fusion , Models, Molecular , Neutralization Tests , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary
18.
PLoS One ; 3(12): e3942, 2008.
Article in English | MEDLINE | ID: mdl-19079604

ABSTRACT

BACKGROUND: The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection. METHODS AND FINDINGS: Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM(+) memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge. CONCLUSIONS: The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM(+) memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens.


Subject(s)
Antibodies, Monoclonal/immunology , B-Lymphocytes/virology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza, Human/prevention & control , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Antibody Specificity/immunology , B-Lymphocytes/immunology , Binding Sites, Antibody , Cross Reactions , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Influenza, Human/immunology , Influenza, Human/virology , Mice , Molecular Sequence Data , Neutralization Tests , Peptide Library , Protein Structure, Tertiary , Tissue Donors
19.
J Virol ; 81(21): 11828-39, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17715236

ABSTRACT

Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies.


Subject(s)
Antibodies/chemistry , Epitopes/chemistry , West Nile virus/immunology , Animals , Cloning, Molecular , DNA Primers/chemistry , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/chemistry , Immunoglobulin M/chemistry , Mice , Mice, Inbred C57BL , Protein Folding , Surface Plasmon Resonance , West Nile Virus Vaccines/chemistry , West Nile virus/chemistry
20.
Expert Rev Vaccines ; 6(2): 183-91, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17408368

ABSTRACT

Seasonal epidemics of West Nile virus (WNV) infection now occur throughout North America, causing clinical symptoms ranging from fever to encephalitis. There are no specific treatment options or licensed vaccines. Several classically developed vaccine candidates are being evaluated in clinical trials. However, questions of safety and/or immunogenicity may limit their usefulness. Mapping of human and murine antibody repertoires against the WNV envelope protein after WNV infection have revealed important insights into the protective immune response against the virus. This review will give an overview of vaccines under development and summarize current data on E-protein antigenicity that could aid in the design of next generation WNV vaccines.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Epitope Mapping , Viral Envelope Proteins/immunology , West Nile Fever/prevention & control , West Nile Virus Vaccines/therapeutic use , West Nile virus/immunology , Animals , Drug Design , Humans , Immunodominant Epitopes , Mice , Vaccination/trends , West Nile Fever/immunology , West Nile Fever/therapy , West Nile Virus Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...