Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 81(10): 2112-2122.e7, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33909987

ABSTRACT

Incompletely synthesized nascent chains obstructing large ribosomal subunits are targeted for degradation by ribosome-associated quality control (RQC). In bacterial RQC, RqcH marks the nascent chains with C-terminal alanine (Ala) tails that are directly recognized by proteasome-like proteases, whereas in eukaryotes, RqcH orthologs (Rqc2/NEMF [nuclear export mediator factor]) assist the Ltn1/Listerin E3 ligase in nascent chain ubiquitylation. Here, we study RQC-mediated proteolytic targeting of ribosome stalling products in mammalian cells. We show that mammalian NEMF has an additional, Listerin-independent proteolytic role, which, as in bacteria, is mediated by tRNA-Ala binding and Ala tailing. However, in mammalian cells Ala tails signal proteolysis indirectly, through a pathway that recognizes C-terminal degrons; we identify the CRL2KLHDC10 E3 ligase complex and the novel C-end rule E3, Pirh2/Rchy1, as bona fide RQC pathway components that directly bind to Ala-tailed ribosome stalling products and target them for degradation. As Listerin mutation causes neurodegeneration in mice, functionally redundant E3s may likewise be implicated in molecular mechanisms of neurodegeneration.


Subject(s)
Alanine/metabolism , Mammals/metabolism , Proteolysis , Ribosomes/metabolism , Animals , Antigens, Neoplasm/metabolism , HeLa Cells , Humans , Models, Biological , Nucleocytoplasmic Transport Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Receptors, Cytokine/metabolism , Salivary Proline-Rich Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Cell ; 178(1): 76-90.e22, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31155236

ABSTRACT

In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.


Subject(s)
Alanine/metabolism , Bacillus subtilis/metabolism , Prokaryotic Cells/metabolism , Proteolysis , Ribosome Subunits, Large, Bacterial/metabolism , Eukaryotic Cells/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Transfer/metabolism , RNA-Binding Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
3.
Nat Cell Biol ; 20(9): 1052-1063, 2018 09.
Article in English | MEDLINE | ID: mdl-30061680

ABSTRACT

A key step in nutrient sensing is activation of the master growth regulator, mTORC1 kinase, on the lysosomal membrane. Nutrients enable mTORC1 scaffolding by a complex composed of the Rag GTPases (Rags) and Ragulator, but the underlying mechanism of mTORC1 capture is poorly understood. Combining dynamic imaging in cells and reconstituted systems, we uncover an affinity switch that controls mTORC1 lifetime and activation at the lysosome. Nutrients destabilize the Rag-Ragulator interface, causing cycling of the Rags between lysosome-bound Ragulator and the cytoplasm, and rendering mTORC1 capture contingent on simultaneous engagement of two Rag-binding interfaces. Rag GTPase domains trigger cycling by coordinately weakening binding of the C-terminal domains to Ragulator in a nucleotide-controlled manner. Cancer-specific Rag mutants override release from Ragulator and enhance mTORC1 recruitment and signalling output. Cycling in the active state sets the Rags apart from most signalling GTPases, and provides a mechanism to attenuate mTORC1 signalling.


Subject(s)
Bone Neoplasms/enzymology , Energy Metabolism , Lysosomes/enzymology , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Osteosarcoma/enzymology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Enzyme Activation , HEK293 Cells , Humans , Lysosomes/genetics , Lysosomes/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Monomeric GTP-Binding Proteins/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...