Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1379900, 2024.
Article in English | MEDLINE | ID: mdl-38882639

ABSTRACT

Efficient engineering of T cells to express exogenous tumor-targeting receptors such as chimeric antigen receptors (CARs) or T-cell receptors (TCRs) is a key requirement of effective adoptive cell therapy for cancer. Genome editing technologies, such as CRISPR/Cas9, can further alter the functional characteristics of therapeutic T cells through the knockout of genes of interest while knocking in synthetic receptors that can recognize cancer cells. Performing multiple rounds of gene transfer with precise genome editing, termed multiplexing, remains a key challenge, especially for non-viral delivery platforms. Here, we demonstrate the efficient production of primary human T cells incorporating the knockout of three clinically relevant genes (B2M, TRAC, and PD1) along with the non-viral transfection of a CAR targeting disialoganglioside GD2. Multiplexed knockout results in high on-target deletion for all three genes, with low off-target editing and chromosome alterations. Incorporating non-viral delivery to knock in a GD2-CAR resulted in a TRAC-B2M-PD1-deficient GD2 CAR T-cell product with a central memory cell phenotype and high cytotoxicity against GD2-expressing neuroblastoma target cells. Multiplexed gene-editing with non-viral delivery by CRISPR/Cas9 is feasible and safe, with a high potential for rapid and efficient manufacturing of highly potent allogeneic CAR T-cell products.

2.
Genetics ; 211(2): 363-366, 2019 02.
Article in English | MEDLINE | ID: mdl-30733376

ABSTRACT

While productivity in academia is measured through authorship, not all scientific contributors have been recognized as authors. We consider nonauthor "acknowledged programmers" (APs), who developed, ran, and sometimes analyzed the results of computer programs. We identified APs in Theoretical Population Biology articles published between 1970 and 1990, finding that APs were disproportionately women (P = 4.0 × 10-10). We note recurrent APs who contributed to several highly-cited manuscripts. The occurrence of APs decreased over time, corresponding to the masculinization of computer programming and the shift of programming responsibilities to individuals credited as authors. We conclude that, while previously overlooked, historically, women have made substantial contributions to computational biology. For a video of this abstract, see: https://vimeo.com/313424402.


Subject(s)
Authorship , Genetics, Population/history , Sexism/statistics & numerical data , Women/history , History, 20th Century , History, 21st Century , Humans , Periodicals as Topic/history , Periodicals as Topic/statistics & numerical data , Sexism/history
SELECTION OF CITATIONS
SEARCH DETAIL
...